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ABSTRACT 

 

 A tunable snapshot imaging spectrometer has been demonstrated.  A liquid crystal 

spatial light modulator (LC SLM) has been integrated into a computed tomographic 

imaging spectrometer (CTIS) to achieve tunability.  The LC SLM allows for rapid, 

programmable, and non-mechanical alteration of its phase profile by the application of 

appropriate voltages to its transparent electrodes. 

 The goal of this dissertation is twofold:  (1) to integrate a liquid crystal spatial 

light modulator into a CTIS instrument and characterize its performance as a tunable 

CTIS disperser, and (2) to implement tunability by analyzing different CTIS 

configurations. 

 The theoretical model of CTIS operation, calibration, reconstruction, and 

disperser design are covered in detail.  The cross talk of the LC SLM forces the use of a 

feedback design algorithm rather than designing the desired phase profile a priori in the 

computer.  The modifications to the current polychromatic linear inversion technique for 

use with the LC SLM in feedback are presented.  The result of the modifications is the 

successful integration of a reprogrammable (i.e. tunable) disperser for the CTIS 

instrument. 

 The implementation of tunability is explored by analyzing the spectral resolution 

of a reconstructed point source for different disperser configurations.  A method for 

experimentally determining the CTIS spectral resolution is presented. 
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CHAPTER 1 - IMAGING SPECTROMETRY 

 

 The goal of imaging spectrometry is the acquisition of a three-dimensional data 

set, called the data cube.  The dimensions of the data cube are the two spatial dimensions 

of an image (x,y) and a third wavelength (λ) dimension.  The data cube is denoted as 

),,(ˆ λyxf , where the ‘hat’ notation is used to signify that the data cube is an estimate of 

a physically real quantity called the object cube, which is denoted as ),,( λyxf .  The 

value of the data cube at any (xo,yo,λo) point is the relative spectral radiance of the 

corresponding point in the object cube.  However, any real instrument has finite spatial 

and spectral resolutions, so the value of the data cube at (xo,yo,λo) is actually a relative 

spectral radiance average of a volume element, or voxel, of the continuous object cube 

whose volume is V = ∆x ∗∆y ∗∆λ.  

 

 (a) (b) (c) 

Figure 1.1:  (a) The object cube,  (b) discretized data cube, and (c) individual voxels of the data cube. 
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Digital imaging is inherently continuous-to-discrete, so the data cube is a discrete 

set of values comprising an estimate of the continuous, real object cube.  Thus the data 

cube is better denoted as ),,(ˆ
lnm yxf λ , where there is M x N x L samples of the object 

cube and the subscripts denote the particular voxel in question. 

 The most common example of a data cube is a color digital image.  Each pixel of 

the image contains a red, green, and blue component comprising the composite color 

image.  The focal plane arrays (FPAs) of commercial digital cameras detect the three 

different colors by using filters such that each pixel integrates over a specific wavelength 

band.   

      

 

Figure 1.2:  Data cube representation of the RGB components of a digital image. 
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The RGB image is a stack of three-color images that are easily separated on a home 

computer for viewing.  This is the most common way of visualizing the data cube, as a 

stack of single color images.  Three bands are quite sufficient for human visualization 

using a tri-phosphor CRT monitor, LCD display, or color printer, each of which display 

(or reflect) almost all of the colors on the CIE color chart within the range of human 

vision.  However, a three-band data cube is insufficient for scientific studies and feature 

identification.  Multi-spectral imaging spectrometers collect a stack of several bands, 

while the number of bands for hyperspectral instruments is in the hundreds.  The 

fundamental limitations on the number of bands that an instrument can collect are the 

instrument dispersion, throughput, and FPA pixel size and sensitivity.   

 Another way to view the data cube is to regard it as a set of hundreds or thousands 

of individual point spectra collected simultaneously.  The data cube is then a set of 

columns (an example of which is the whiskbroom data of Figure 1.4a.) corresponding to 

each spatial (xn, ym) pixel rather than a stack of x-y planes.  The combination of imaging 

and spectrometry is a powerful remote sensing tool, and the choice of how best to view 

the data cube is based on application and convenience. 

 

Acquiring the data cube 

  Almost all imaging spectrometers require some type of scanning to acquire the 

data cube, and most require moving parts.  This is because current FPA technology is 

limited to a two-dimensional format of pixels that attempts to acquire a three-dimensional 

object.  Without scanning or beam division, the spatial and spectral information of the 
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data cube overlap and the content from several pixels are spread into each particular 

voxel:  i.e., there is spatial/spectral cross talk.  One can imagine a three dimensional FPA 

which consists of a stack of planes of pixels, each of which absorbs only a very small 

band of wavelengths and passes all others.  Such an FPA would preclude the need for 

scanning and simplify the basic imaging spectrometer.  A ‘focal plane cube’ such as this 

is still in the realm of imagination; however, FOVEON has developed a 3-band visible 

array that collects the RGB components of the scene in each pixel.1  There is also a 

significant amount of work currently in progress to fabricate dual band cameras where 

one array absorbs 3-5 um light and the other absorbs 8-12 um light. 

Some of the more common imaging spectrometers include whiskbroom and push 

broom scanners, filtered cameras, wedge spectrometers, Fourier transform spectrometers, 

and computed tomographic imaging spectrometers. 

An example of a whiskbroom scanner is the Airborne Visible and Infra Red 

Imaging Spectrometer2 (AVIRIS) for earth remote sensing in the 400 – 2500 nm spectral 

range using 224 bands.  The AVIRIS uses a diffraction grating, a linear array of 224 

pixels, and a scanning mirror to sweep the field of view to obtain a 614 pixel line of data 

with 10 nm bandwidth.  The instrument is flown on a NASA ER-2 (an updated version of 

the famous U2 spy plane) and the along track motion provides the scanning along the 

other spatial dimension.  Push broom scanners work in much the same way, only rather 

than a linear array they use a 2D array and do not need to scan in the cross-track 

dimension.   
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Figure 1.3: The AVIRIS data cube of Moffet field.2 

 

Filtered cameras scan along the spectral dimension of the data cube.  A rotating 

spectral filter wheel is placed in the optical train of a 2D staring FPA that collects full 

spatial resolution images as the wheel spins. 

 Wedge spectrometers3 use a ‘wedge’ thin film that acts as a narrow band 

filter with a varying center wavelength along the displacement axis of the wedge.  The 

filter can be fabricated directly onto a 2D FPA and the images taken form a tilted plane in 

the data cube.  The scene is subsequently scanned in the direction of the wedge to acquire 

the entire data cube. 

Fourier transform spectrometers4 are based on the Michelson interferometer and 

encode the spectral information of a point to an interferogram.  The instrument has very 

good signal-to-noise ratio over a broad range of spectra, but is also very sensitive to 

environmental conditions because it is an interferometer.  The field of view of these 
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instruments is limited by the ability to keep a consistent optical path difference for off 

axis points. 

Computed tomographic imaging spectrometers are a class of instruments that 

allow the spatial and spectral information of the data cube to overlap.  In the Computed 

Tomographic Hyperspectral Imaging Spectrometer5, or CTHIS, a direct view prism is 

used to disperse an image of a scene.  Multiple images are taken while rotating the prism.  

The resulting data is a set of 2D projections of the 3D data cube in the same way a CAT 

scan forms a set of 2D images of a spatial, 3D object.  A post-processing step using 

complex algorithms is needed to reconstruct the 3D data cube from its set of projections. 

The biggest challenge with scanning imaging spectrometers is spatial and spectral 

misregistration.  Often either the platform, as in the case of the AVIRIS, or the object is 

moving so that by the time one column or plane of the data cube is acquired the scene has 

changed when acquisition for the next column or plane has started.  This problem can be 

averted with a snapshot imaging spectrometer where the data for the entire data cube is 

collected in one integration time of the FPA. 
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 (a) (b) 

Figure 1.4:  (a) Regions of the data cube collected in a single snapshot with some of the most common 

imaging spectrometers compared with (b) collecting the entire data cube in a single integration time with 

the CTIS. 

 

Snapshot acquisition 

 The Computed Tomographic Imaging Spectrometer6 (CTIS) is a snapshot 

imaging spectrometer that does not use any scanning and has no moving parts.  As with 

the CTHIS system mentioned previously, the spatial and spectral information of the scene 

is allowed to overlap in a set of 2D projections of the data cube.  The CTIS, however, 

collects the entire set of projections in a single frame.  The CTIS uses a diffraction 

grating to diffract the central field of view into multiple orders, each of which is 

dispersed in wavelength.  The field of view of the CTIS is minified, leaving room on the 

rest of the FPA for collection of these higher diffraction orders.  Figure 1.5 shows an 

example of the raw data collected with the CTIS from a broadband, extended source.   
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Figure 1.5:  The CTIS raw data set.  The central, white image is the zero order image that determines the 

spatial resolution of the instrument.  The higher order projections are replications of the zero order image 

with dispersion. 

 

The color in the data set shows explicitly the overlap of the spatial and spectral 

information as a spectral smear of the central (zero order) image.  The physical layout 

and mathematical model of the CTIS and its reconstruction algorithms will be discussed 

in the next chapter. 

 

Tunability and dissertation goals 

 One of the key elements of the CTIS is its grating disperser.  It is the component 

that controls the number of projections (diffraction orders), the dispersion, and the signal 

to noise ratio by its aperture and spectral efficiencies.  It is also the component that, if it 
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could be changed, would make the CTIS ‘tunable’ in the sense that it could be used to 

change the instrument’s configuration parameters.  Specifically, tunability allows the 

grating period (affecting the dispersion and spectral resolution), the number of orders 

(which is the number of projections from which to reconstruct), and to some degree the 

spectral efficiencies of the orders (which allows for possible optical data cube filtering) 

to be changed.  The spatial resolution of the instrument cannot be changed with a tunable 

disperser.  The spatial resolution is set by the field stop, FPA pixel sizes, and the CTIS 

lenses.  Using zoom lenses in the CTIS allows both the spatial and spectral resolution of 

the CTIS to be altered, but without a tunable disperser the number of diffraction orders 

and their spectral efficiencies cannot be changed.  The combination of zoom lenses and a 

tunable disperser allows for the full tunability of all CTIS configuration parameters.  The 

instrument built for this project has this combination; however, to limit the scope of the 

project only the tunability of the disperser is discussed. 

 Current CTIS dispersers are phase Computer Generated Holographic (CGH) 

diffraction gratings used in transmission.  After the phase values of these CGHs are 

designed, they are fabricated by etching a surface relief pattern into some material.  In the 

visible wavelength region, this material is polymethyl methacrylate (PMMA) plastic, and 

in the MWIR either silicon or gallium arsenide (GaAs) are used.  Tunability requires that 

the CGH phases can be changed with some reasonable speed, and liquid crystal spatial 

light modulators (LC SLM) allow for fairly rapid, programmable tunability of the phase 

values.  Raytheon Network Centric Systems (RNCS) in Lexington, Massachusetts, has 

developed a liquid crystal spatial light modulator that is a good candidate for use as a 
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tunable CTIS disperser.  RNCS refers to their device as an Optical Phased Array7 (OPA) 

in direct analogy with microwave phased arrays used for beam steering.  Raytheon has 

been kind enough to lend their demonstration OPA for this project.    

 This dissertation is an evolutionary work building on the groundwork laid by 

others, most notably M. Descour8 and C. Volin9.  The theoretical basis of CTIS operation, 

calibration, reconstruction, and disperser design are found in their dissertations and are 

summarized in Chapters 2 and 3 for completeness.  There are two goals for this work:  (1) 

to integrate a liquid crystal spatial light modulator into the CTIS and characterize its 

performance as a tunable CTIS disperser, and (2) to research the effects of tunability by 

implementing multiple CTIS configurations using the LC SLM.  The details of 

integrating the Raytheon OPA into the CTIS require a modification of current CGH 

design algorithms.  A summary of the current CGH design algorithm is found in Chapter 

3, and the application of the CGH design algorithm with the OPA, as well as the OPA’s 

physical layout and grating performance, are contained in Chapter 4. 

 Chapter 5 covers the implementation of tunability.  Specifically, the effects of 

three configurations on the reconstruction speed, signal to noise ratio of the diffracted 

orders, and especially the spectral resolution limit of the instrument are explored. 



 22

CHAPTER 2 – CTIS INSTRUMENT 

CTIS optical layout 

The CTIS consists of three lens elements, a field stop, a dispersing element, and a 

large format focal plane array (FPA).  A schematic of the CTIS is shown in Figure 2.1(a) 

and a picture of the instrument used for this project is shown in Figure 2.1(b). 

 

 (a) (b) 

Figure 2.1:  (a) Schematic drawing of the CTIS and (b) a photo of the visible CTIS instrument. 

 

The optical train in Figure 2.1 proceeds from left to right.  The objective lens forms an 

image of a scene in the plane of the field stop, which determines the object space field of 

view of the instrument.  The field stop and its contents are reimaged to the FPA by the 

collimating/reimaging telescope with some minification.  This image is termed the zero-

order image.  The higher diffraction orders of the disperser serve to replicate this zero-

order image in a rectangular array.  Each replication has some amount of dispersion that 

is determined by the disperser’s grating period and the reimaging lens focal length.  This 
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forms the raw data set that the CTIS collects, as shown in Figure 1.5 in the previous 

chapter.  This data set contains the 2D projections of the 3D object cube from which the 

3D data cube (which is the best estimate of the continuous, real object cube) is 

reconstructed using techniques similar to limited angle tomography. 

 

CTIS mathematical model 

 As Volin9 states in his dissertation “… it is not my intention to re-derive the 

system model ….”  Descour8 carries through the derivation of the system model, and 

Volin summarizes the results clearly and concisely while describing the current state-of-

the-art reconstruction methods.  These dissertations together provide a more than 

adequate mathematical basis for CTIS operation, and the highlights from these 

dissertations are included here for completeness.  The structure of the description 

presented here follows Descour, starting with the continuous-to-continuous model 

describing the frequency space representation of the object cube and the missing cones, 

then describes the more accurate continuous-to-discrete model taking into account 

quantization and pixellation in the measurements, and finally ends with the discrete-to-

discrete model that must be used to reconstruct the data cube using a discrete set of basis 

functions (voxels). 
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Continuous-to-continuous model 

 The object cube, f(r,λ), is a continuous function of its arguments (where 

ŷx̂r y x +=  ).  The continuous model of the CTIS imaging system is given by 

equation (2.14) in Descour, and is rewritten by Volin as: 

∑∫∫∫
∞

=

++−=
1

2 )'( )'ˆ'( )( ),( )'(
j

jjj nddmtfg rr rrrrr λλµµδλλ         (2.1) 

The integral term represents each diffraction order and the sum index, j, is over the 

multiple diffraction orders.  The vector r’ denotes the spatial coordinate vector of the 

image, whereas the vector r is the spatial coordinate vector of the object in the plane of 

the CTIS field stop.  The function tj(λ) denotes the spectral transmittance of the CTIS for 

the jth order, which is dominated by the spectral efficiency of the disperser and the 

camera’s spectral response (assuming that the optics are well corrected for aberrations).  

The scalar µ is the magnification between the image and the object in the field stop, and 

mj is the dispersion factor for the jth order in the direction of 'r̂j .  The function n(r’) 

denotes additive noise.  Equation (2.1) was formed by integration along idealized Dirac-δ 

lines as part of the continuous, tomographic model.  For simplicity in the frequency 

domain representation, it is assumed that the spectral transmittance of the instrument is 

unity and that there is zero noise.  Each particular diffraction order is represented in the 

frequency domain by taking the Fourier transform of the integral terms within the 

summation of equation (2.1): 

( )'mFG jjj rρ ˆ',,)'ρ( ⋅= µηµξ     (2.2) 
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Each diffraction order defines a plane in the 3D frequency space representation of the 

object cube, and each plane must pass through the origin in frequency space in what is 

known as the central slice theorem.  The central slice theorem indicates that additional 

data can be obtained only by changing the rotation angle ( 'r̂j ) and inclination (mj) of each 

plane.  Figure 2.2(a) shows a representation of G(ρ’) in frequency space coordinates.   

 

 (a) (b) 

Figure 2.2:  Depiction of the data cube with (a) a finite number of planes and (b) an infinite number of 

planes that are possible with the CTIS illustrating the missing cones.9 

 

The plane with zero inclination represents the zero order, as it has no dispersion.  There is 

an inherent limitation on the inclination angle of the data in frequency space that is 

collected by the CTIS, namely, the spatial extent of the FPA.  Taking data of an infinite 

number of planes (CTIS diffraction orders) over all the possible angles (rotation of the 

planes about the l axis) and inclinations sweeps out the range of viable data space shown 
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in Figure 2.2(b).  The limitation on the inclination angle causes there to be a region where 

information at high spectral/low spatial frequencies is lost in ‘cones’ of empty space.  

These are the so-called missing cones, one above and below the ξ−η plane.  Near infinite 

dispersion across the FPA would be needed to fill in data along the l axis. 

 Following Volin, a more accurate rendering of the situation is obtained by 

carrying through the transmittance term, tj(λ): 

( ) )ˆ'()()(ˆ',,)'ρ( 'T'mFG jjjjj rρrρ ⋅∗∗∗⋅= µηδµξδµηµξ  (2.3) 

Typically the transmittance of the instrument is dominated by the spectral diffraction 

efficiency of the disperser, which is designed to be spectrally flat.  This transforms to a 

delta function in wavelength frequency space and equation (2.3) reduces to the form of 

equation (2.2).  What equation (2.3) indicates, however, is that altering the diffraction 

efficiencies of the disperser will change the performance of the CTIS and that the 

information may possibly be spread into the missing cone by designing the disperser with 

some spectral efficiency modulation.  Volin has explored methods to fill in the missing 

cone using a priori estimates and SVD.  Modulating the disperser efficiencies presents an 

additional, albeit difficult, possibility for extrapolating information into the missing cone, 

but is beyond the scope of this work. 

 

Continuous-to-discrete model 

 The most accurate model of the CTIS is the continuous-to-discrete model where 

the object cube is represented as a continuous function of its arguments.  However, the 
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data that the CTIS collects is discretized due to the spatial extent of the FPA pixels, A/D 

conversion for storing the image digitally, and the use of a finite number of diffraction 

orders.  This is written as: 

∑∫∫∫
=

++−=
N

j
ijjiji nddmhtfg

1

2 )'ˆ'( )( ),( λλµµλλ r rrrr              (2.4) 

The image is no longer a function of a continuous 2D spatial vector but rather is a 

collection of a finite number of locations (pixels) shown by the subscript i.  The 

summation is over a finite number of diffraction orders, and the A/D conversion is 

lumped into the noise term as quantization noise.  The integration manifolds are no 

longer the idealized line Dirac-δ functions of the continuous model and are now 

represented by the linear operator h, denoting either the PSF of the instrument if the CTIS 

is viewed as a linear imaging system, or the probability of a photon arising from (r,λ) 

being recorded at pixel i, if statistical optics is preferred.  The discrete nature of the 

collected data prevents the data from fully sampling the volume of frequency space 

shown in Figure 2.2(b), and in actuality the situation is better represented by Figure 

2.2(a) where there are areas of the object cube that are unsampled in frequency space.  

Thus a unique reconstruction of an object cube from the CTIS projections cannot be 

formed.  However, the use of non-linear reconstructions techniques utilizing a priori 

information about the object cube results in a good approximation of the object cube. 
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Discrete-to-discrete model 

 Although the continuous-to-discrete mathematical model is the most accurate, a 

continuous object cube cannot be reconstructed.  Thus the term data cube is used to 

denote the reconstructions.  The data cube is an approximation of the object cube using a 

discrete set of basis functions – voxels.  The imaging equation now becomes: 

nfHg += ˆ          (2.5) 

where g is an M x 1 image vector, H is the M x N system matrix, f̂ is an N x 1 object 

vector, and n is an M x 1 noise vector.  The 2D CTIS image, g, and 3D data cube, f̂ , are 

arbitrarily rasterized into vectors for matrix multiplication.  Equation (2.5) is termed the 

forward imaging problem.  The goal is to invert this equation to obtain the data cube f̂ . 

 

Reconstruction techniques 

 The direct inversion of equation (2.5) using a pseudoinverse is impractical due to 

the size of the system matrix.  As an example, consider the 2048 x 2048 FPA used for 

this project with a zero order image size of 100 x 100 pixels and 30 reconstruction bands.  

A single voxel maps to 2048 x 2048 FPA pixels.  There are 100*100*30 voxels, giving a 

system matrix size of roughly 1.2 *1012 elements.  This is somewhat misleading, as for 

each voxel most of the 2048 x 2048 pixels do not contain information about the voxel 

spread function and can be stored sparsely.  Even so, direct inversion is intractable and 

consequently the CTIS reconstruction techniques are all iterative using sparse matrix 
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storage and multiplication in the algorithms.  Descour employed the additive techniques 

of the Landweber algorithm and the Maximum Likelihood approach, which assume 

signal independent and signal dependent noise, respectively, as well as the multiplicative 

technique of Expectation Maximization (EM), which also assumes signal dependent 

noise obeying Poisson statistics.  Descour found the multiplicative technique to be the 

most satisfactory as it has very rapid, non-linear convergence.  One of the drawbacks of 

EM is that it tends to introduce high-frequency artifacts in the reconstruction.  Therefore, 

Volin added a Multiplicative Algebraic Reconstruction Technique (MART) to the CTIS 

reconstruction library, which assumes a Gaussian noise distribution and tends to reduce 

the high-frequency spatial artifacts introduced by EM.  These are the current workhorse 

algorithms used in CTIS reconstructions.  The iterative equation for EM is listed below in 

equation (2.6) and the equation for MART is listed in equation (2.7), where k is the 

iteration index and the starting point is typically a uniform initial estimate of the data 

cube. 
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Calibration 

 The CTIS reconstruction algorithms are dependent on the system matrix H.  The 

system matrix can be determined computationally, experimentally, or by a hybrid of both 

methods.  Computationally calculating the system matrix is faster than determining the 

matrix in the lab, however it depends on accurate knowledge of the optics and their 

coatings, the disperser along with its fabrication errors, the camera response and pixel fill 

factor, scattering, and numerous other factors of reality that complicate the computation.  

On the other hand, experimentally characterizing the system matrix is exhaustive.  To 

date, a hybrid approach has been taken utilizing the shift invariance of the CTIS. 

 Figure 2.3 shows the hardware that is used for the calibration.  A DC powered 

tungsten-halogen lamp is imaged to the entrance slit of a TRIAX 180 monochromator 

manufactured by Jobin-Yvon.  The light is collimated and directed to one of three blazed 

reflection gratings mounted on a rotatable turret.  The gratings are blazed at 1200 

lines/mm, 600 lines/mm, and 300 lines/mm for use at visible, SWIR, and MWIR 

wavelengths, respectively.  The collimated, dispersed light is then focused to the exit slit, 

which samples the dispersed spectra.  The wavelength exiting the monochromator is 

selected by rotating the grating, and the entrance and exit slits can be opened and closed 

to control the bandwidth and irradiant intensity of the exiting light.  The spectral content 

of the light exiting the monochromator is given by a convolution of the entrance and exit 

slits and should thus be triangular, which was confirmed upon observation with a 

reference spectrometer.  The exiting light is then focused to the entrance face of a fiber 

by a microscope objective.  The microscope objective is used because it has been found 
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 (a)  

(b)  

(c)   

Figure 2.3:  (a) A schematic of the experimental calibration, (b) a picture of the calibration apparatus (left 

half of schematic) and (c) the CTIS (right half of schematic). 
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to couple the most light to the fiber compared with spherical or off-axis parabolic 

mirrors, which would be necessary when working in the MWIR.  The exit face of the 

wave guide is mounted using xyz translation stages and is imaged to the CTIS field stop.  

If the image of the fiber’s exit face is small enough, a single pixel on the CTIS FPA will 

be illuminated in the zero order image and a spectral/spatial point source has effectively 

been placed in the plane of the field stop.  The point source can be translated to different 

locations in the field stop using the stages, and a quasi-monochromatic wavelength can be 

selected using the monochromator.  This point source serves to illuminate a single voxel 

of the data cube, and the CTIS calibration records the response of the instrument to 

individual voxels.  An image acquired with this set up is therefore referred to as a voxel 

spread function (VSF), which is the 3D counterpart to a point spread function (PSF).  A 

full experimental calibration requires acquiring a VSF for every voxel in the data cube. 

 Figure 2.4 schematically shows the relationship between the system matrix and 

individual voxels.  In Figure 2.4(a), the center voxel is imaged through the system by 

imaging the exit face of the wave guide on-axis to the field stop with the monochromator 

selecting the wavelength that corresponds to the center band.  Since only one voxel 

contains light, the vector f will have only one non-zero value, shown at location n’.  The 

resulting image replicates the n’ column of the system matrix multiplied by the constant 

fn’ (the value of the n’ element of f).  This calibration image constitutes the VSF of the n’ 

voxel.  A reference photometer, manufactured by United Detector Technologies (UDT), 

is used to normalize the values to the appropriate units.  The UDT photometer has a 

responsivity in units of Amps/Watt for the optical power incident on its detector, which is 
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the optical power in Watts of the voxel.  The image data is quantized as the unitless 

numbers of analog-to-digital units (ADUs), and the integration time of the camera is used 

along with the reference photometer readings to normalize the units of the system matrix 

H to ADU/Joule. 

 

Figure 2.4:  (a) Illustration of the formulation of a column of the system matrix corresponding to a single 

VSF.  (b) The set of data taken for the hybrid experimental/computational calibration that samples a 

column of the data cube voxels and forms a set of columns in the system matrix. 

 

The hybrid calibration procedure only requires experimental determination of the 

VSFs from a subset of the voxels of the data cube.  The CTIS is assumed to be shift 
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invariant for each wavelength, therefore the VSFs for each CTIS band need only be 

experimentally acquired for a single spatial position, typically on axis, as shown in Figure 

2.4(b).  The remaining columns of the system matrix are filled in by appropriately 

shifting the VSFs of the experimental data appropriately.   

Shift invariance is generally true of the CTIS instrument, however, each 

individual instrument should be tested for shift invariance due to variations in the optics 

and alignment.  The calibration images for the CTIS used in this project have a 

correlation of just over 98% from the center to the corner of the field stop.  Figure 2.5 

shows two images superimposed, one with the point source located on axis and the other 

with the point source located near the upper right corner of the field stop (the box at the 

center denotes the spatial extent of the field stop).  The images have been scaled to show 

the order locations. 

 

Figure 2.5:  Comparison of VSFs for locations at the center and corner of the field stop. 
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In reality, it is difficult to image a point source in the plane of the field stop to the 

7.4 um wide pixels of the FPA used for this project, and the image has some spread. 

   

 600 nm 660 nm 720 nm 

Figure 2.6:  Zero order images at 600 nm, 660 nm, and 720 nm. 

 

Figure 2.6 shows magnified versions of the zero order for calibration images taken at 600 

nm, 660 nm, and 720 nm.  The fiber face cannot image to a single pixel, partly because 

the fiber needs to be large to get sufficient signal, and partly because the CTIS itself 

consists of off-the-shelf optics and a borrowed OPA that have not been designed to work 

together for optimal imaging.  The blur increases with wavelength because of chromatic 

aberration in the singlet that is used to image the fiber face to the plane of the field stop.  

The optimal focus of the singlet is set at 600 nm, the lowest wavelength, to increase the 

signal as much as possible at this end of the wavelength band.  The effect of using 

‘blurred’ point sources to determine the system matrix is to blur the reconstructions and 

to degrade the spectral resolution of the instrument, which will be explored in more depth 

in Chapter 5. 
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CHAPTER 3 – CTIS DISPERSER DESIGN 

 

 The first dispersive elements used in the CTIS by Descour8 were a trio of 

sinusoidal phase gratings crossed at 600 to effect a hexagonal pattern of projections on the 

FPA.  The far-field efficiencies of the diffracted orders of a sinusoidal phase grating are 

calculated by the Fourier transform of the grating’s transmittance10 and there is little 

freedom to tailor these efficiencies to a desired pattern.  The gratings were high 

efficiency, but most of that efficiency was not fanned out evenly into the desired 

diffraction orders.  Consequently, it was difficult to fully utilize the dynamic range of the 

camera and the distribution of light caused some of the desired orders to have low SNR.  

Phase computer generated holograms (CGHs) allow for greater control over the 

efficiencies of the orders by providing the degrees of freedom needed in the CGH plane 

to optimize the coupling of the light into the desired diffraction orders. 

There are many design algorithms which calculate the phase profile of a CGH 

needed for a particular far-field irradiance pattern including simulated annealing,11 

conjugate gradient,12 downhill simplex,13 and Gerchberg-Saxton.14  However, these are 

typically implemented as monochromatic design algorithms.  While it is possible to use a 

polychromatic merit function to optimize the design for a wavelength band of interest 

using these algorithms, the convergence to an optimum solution requires a large set of 
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individual designs.15  Volin has developed a linear inversion technique16,9 for the design 

of polychromatic CGHs, and this is the state of the art design algorithm used for CTIS 

dispersers.  For completeness, the development of the technique is repeated here roughly 

following the pattern that can be found in Volin, but with the design results presented for 

the visible wavelength region rather than the MWIR.  Modifications to the technique are 

required for application with the Raytheon optical phased array (OPA) and are described 

in the next chapter.  The results of a few example CGH designs are presented at the end 

of this chapter. 

 

Polychromatic SVD CGH design technique 

 The design goal is to determine the correct CGH phases for a given desired 

amplitude pattern in the far-field.  It is typically assumed that plane waves are incident on 

the CGH, and this is the case with the CTIS.  The following description comes in four 

parts:  (1) the mathematical model of the CGH, (2) linearity, (3) singular value 

decomposition, and (4) linear inversion. 

 

Mathematical model of the CGH 

The CTIS CGH consists of a single unit cell of individual phase elements referred 

to as either ‘phasels’ or CGH pixels.  The unit cell typically contains 16 x 16, 10 x 10, or 

8 x 8 phasels, and this cell is identically replicated across the entire clear aperture of the 

CGH.17  The phase delay of a particular phasel is given by: 
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where nλ is the material index at wavelength λ, and d is the physical etch depth in the 

material.  The transmission of the CGH is given by: 
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where q is the number of phasels in each direction, ξc and ηc are the physical width and 

height of each phasel, and ** denotes a two-dimensional convolution.   

        

 (a) (b) 

Figure 3.1:  (a) Grayscale representation of the CGH unit cell as well as (b) a surface plot representation of 

a q = 16 etched CGH unit cell. 

 

The first term of equation (3.2) denotes the unit cell of CGH phasels, and the second is 

the replication term.  Figure 3.1(a) shows a grayscale representation of the unit cell of 
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equation (3.2) with q = 16.  Figure 3.1(b) shows a surface plot of what the unit cell of the 

resulting etched CGH would look like. 

The far-field complex amplitude of plane waves encountering this CGH followed 

by a lens of focal length f is given by the Fourier transform of equation (3.2) according to 

Fraunhofer diffraction.  The transform is evaluated at ξ = x/λf and η = y/λf to give: 
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where sinc(x) = sin(πx)/πx.  Equation (3.3) is nonzero only at the delta function 

locations, which are given by ck qfkx ξλ=  and cl qfly ηλ= , so a simplified version 

of equation (3.3) can be rewritten as: 
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Notice that after scaling by the incident wave amplitude (or assuming the incident light is 

unit amplitude), this is a modified form of the Discrete Fourier Transform (DFT): 
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and is even more closely related to the form of the DFT found in computing software 

such as IDL: 
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The DFT then gives the exact Fourier transform of the phase pattern when mnj
mn eu Φ−= and 

after multiplication by the correct sinc function.  Note that the first lobe of the sinc 

function contains 2q orders and its zeros occur every q orders; i.e. the zeros are at n*q 

where n is an integer ranging from negative to positive infinity.  Also note that from 

equation (3.4) the far-field pattern repeats exactly (except for the sinc function) every q 

orders.  The amplitudes of the first 2q orders resulting from the phase profile of Figure 

3.1 are shown below in Figure 3.2. 

   

 (a) (b) 

Figure 3.2:  (a) The diffraction order amplitudes (in reverse contrast) of the phase profile in Figure 3.1.   

(b) The very same image with the orders depicted as pixels for better visibility.  The first 2q orders are 

shown, with the edges corresponding to the first zero of the sinc function. 
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Linearity 

 The mapping from the CGH plane to the far-field plane is a finite, discrete-to-

discrete mapping.  The Fourier transform is a linear operation between the CGH 

transmission and the electric fields in the Fraunhofer region.  However, the CGH phases 

need to be related to the electric field amplitudes, and there are two non-linear operations 

conducted along the mathematical train to relate those quantities:  (1) the transmission of 

the CGH is the exponential of the phase delay of the material times its amplitude 

transmission (which is 1 for the ideal phase CGH) - t(xm,yn) = Tmn
mnje Φ− , and (2) the 

amplitudes are the absolute value of the complex electric fields Akl = |Ekl|.  For the model 

it is reasonable to assume that the CGH is completely transmitting, T = 1.  The non-linear 

steps can be illustrated as:  

klkllinearnonkllinear

i

linearnonmn AEEe mn =→⇐⇒→Φ
−

Φ

−

F{}
                 (3.7) 

The far-field amplitudes are certainly not linearly related to the CGH phases, but 

it can be shown that small changes in CGH phase are linearly related to changes in the 

far-field amplitudes, i.e.: 
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where HΦ,klmn is the linear operator, called the sensitivity matrix, and the first subscript 

denotes that the values depend on the current CGH phase values.  Linearity is shown by a 

perturbing a single CGH phasel by a small phase change, 
mnmnmn ∆Φ+Φ=Φ ' .  The 

approximate transmission of the CGH at that phasel is: 
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        (3.9) 

Notice that the transmission of the perturbed phasel is approximated by the original 

transmission plus a perturbation term that is linear with mn∆Φ .  Also, a perturbation at a 

different phasel will be separately additive.  For a given plane wave impinging on the 

CGH, ΨΕ= jeΕ , the resulting complex electric field in the Fraunhofer region is: 
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Using ck qfkx ξλ=  and cl qfly ηλ= from equation (3.3), the discrete diffraction 

orders are written as: 
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The change in complex field is then the product between the change in phase and three 

complex exponential terms that have been lumped into Θklmn.  The incident complex field 

can be ordered into a vector and separated into real and imaginary parts as E  = Er + jEi 

so that the complex electric field in the far-field can be written as: 

DCEEEEE' irir jjej klmnj
mn +++=∆Φ++= Θ                         (3.12) 

The absolute value of the complex field gives the amplitudes of the orders: 

( ) ( )[ ] ( ) ( ) ( )[ ] 212122 2 DECEDCEEDECEEA' ir
22

irir +++++=+++==    (3.13) 

Equation (3.13) is expanded in a Taylor series about C and the change in the far-field 

amplitudes to a first order approximation is: 
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Linearity is violated by diffraction orders with a very small initial irradiance, which can 

be seen in the second order terms of equation (3.14) which have powers of the amplitude 

in the denominator.  The linearity is extended in the algorithm by separately constraining 

the real and imaginary components of dim orders, effectively relating the phase to the 

complex electric field itself and simply not performing the second non-linear operation of 

equation (3.7).  This bypasses the approximation due to taking only the first order term of 

the Taylor series.  Note that this is possible only in the computer, and when the algorithm 

is used in feedback between the camera and the optical phased array (OPA) access is 

granted to only to the far-field amplitudes (as square roots of detected irradiances by the 

camera) and not the complex electric fields.  Volin states that equation (3.15) is linear 

with an accuracy of 90% for phase perturbations of π/7 radians.  Also, the change in 

amplitude for a particular order must be less than its current amplitude.  Constraining the 

real and imaginary parts of low irradiance orders eliminates this restriction, and for the 

other orders the starting point must have some efficiency already coupled into orders that 

are desired to have non-zero efficiency.  This will almost always be true when the starting 

point is a random phase profile. 
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Singular Value Decomposition 

 To this point, the mathematical description of the CGH and a linear relationship 

between small phase changes and far-field amplitude changes has been established.  The 

inversion problem, however, is ill-posed because there are an unequal number of 

measurements (diffraction amplitudes), M, and unknowns (CGH phasels), N.  In this case 

there are more measurements than unknowns, M > N, and the problem is said to be over 

determined.  A powerful technique for inversion of ill-posed, over determined linear 

problems is singular value decomposition18 (SVD).  SVD generates a basis set for object 

space (the CGH plane) and a basis set for image space (the far-field plane).  For any 

linear system operator H such that g =  H f, the operators H†H and HH† are Hermitian 

and their eigenvalues {µn} are therefore real and positive and the eigenvectors ({vn} and 

{un}, respectively) are real.  The dagger notation indicates the adjoint of the matrix.  The 

eigenvectors from each set are orthonormal and related by: 

n

n

n

1 vu H
µ

=                (3.16) 

The system matrix can be decomposed in terms of the eigenvectors and eigenvalues of 

H†H and HH† as: 

tUWV=H             (3.17) 

The eigenvectors have been organized into matrices of column-oriented vectors U and V, 

and the square roots of the eigenvalues are placed along the diagonal of W.  The 

eigenvectors are referred to as the singular vectors of H and the square roots of the 
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eigenvalues, 
nµ=nw , are referred to as the singular values.  The matrix V contains 

the object space singular vectors, also referred to as phase perturbation modes, and the 

matrix U contains the image space singular vectors, which are also referred to as 

diffraction order amplitude variation modes.  The singular values rate the influence of a 

particular object space singular vector on its corresponding image space singular vector 

and are typically ordered from largest to smallest.  The rank of the matrix, R, is equal to 

the number of non-zero singular values.  For an over determined equation, the rank is less 

than or equal to the number of unknowns, NR ≤ . 

 The exact inverse of the matrix exists only if the matrix is square, M = N, and 

non-singular, R = N (i.e. there are no zero singular values). 
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The exact inverse does not exist for singular, non-square matrices, but the Moore-Penrose 

pseudoinverse can still be constructed: 
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where the summation is only over the rank.  The tilde notation in equation (3.19) denotes 

that the diagonal elements of the W matrix beyond the rank R (and up to N) are filled 

with zeros rather than 1/zeros, as the equation would imply.  The Moore-Penrose 

pseudoinverse gives the least squares solution to the inversion problem.  

Figure 3.3 shows an example decomposition of the CGH of Figure 3.1.   
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 (a) (b) 

     

 (c) (d) 

Figure 3.3:  (a) The first phase perturbation mode (v1), (b) the singular values (w), (c) the first diffraction 

order amplitude variation mode (u1) with the real part of the higher orders, and (d) u1 with the imaginary 

part of the higher orders. 

 

Figure 3.3(a) shows the first phase perturbation mode, v1.  Figure 3.3(b) shows the 

singular values, w.  Figure 3.3(c) shows the first diffraction order amplitude variation 
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mode, u1, where the central five orders are the amplitude and the higher orders are the 

real part.  Figure 3.3(d) shows the same diffraction order amplitude variation mode with 

the imaginary part of the higher orders.  The central orders are weighted higher than the 

other orders and therefore will vary more. 

 

Inversion 

 Before SVD can be performed on the sensitivity matrix to construct the 

pseudoinverse, the sensitivity matrix must first be constructed.  As equation (3.8) hints, 

the sensitivity matrix is composed of amplitude change to phase change ratios, dAkl / 

dΦmn.  The matrix is constructed by actually perturbing the phase at each CGH phasel 

and recording the amplitude change.  The process is expedited by utilizing a look-up 

table of analytically calculated complex far-field amplitude changes resulting from the 

perturbations at each phasel.  Weighting factors for the desired amplitude pattern, fmn, are 

also encoded in the sensitivity matrix which would then look like Figure 3.4.  The 

number of unknowns, N, is the number of CGH phases and is set once the unit cell size is 

chosen.  The number of measurements, M, is the number of diffraction order amplitudes  
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Figure 3.4:  Representation of the contents of the CGH sensitivity matrix. 
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that are calculated in the far-field, and is set by however many orders are desired.  It then 

becomes apparent that this construction lends itself very easily to a polychromatic design 

- amplitudes at several different wavelengths are determined and the results are placed in 

the sensitivity matrix.  Designs that have been fabricated typically use five optimization 

wavelengths within one octave of a particular band (i.e. from 400 nm to 800 nm). 

 The algorithm begins from a random phase CGH and the resulting far-field 

amplitudes are calculated.  The sensitivity matrix is then constructed.  Taking the 

difference between the current amplitudes and the desired amplitudes forms an error 

vector, ∆Ae.  The least squares solution to the inversion problem is found by applying the 

pseudoinverse to the error vector: 

ee AUWVA ∆−=∆−=Φ −+ t1~Hδ                                      (3.20) 

The contribution of each phase perturbation mode is proportional to the inverse of its 

corresponding singular value (or zero for the modes beyond the rank).  For modes with 

the smallest singular values, a large phase change is needed to produce a small amplitude 

change, and these are the modes that introduce nonlinearities.  This can be reduced by 

thresholding the singular values.  As mentioned in the linearity section, a more clever 

way of reducing the nonlinearity that was developed by Volin is simply to constrain the 

real and imaginary parts of the low irradiance (i.e., undesired) orders separately.  This in 

effect relates the phases to the complex fields, not their amplitudes, and avoids the 

nonlinearities of taking the absolute values of the electric fields.  No thresholding is 

necessary in this case, though there are still nonlinearities due to relating the phase, rather 

than the exponential of the phase, to the complex field.  The presence of nonlinearities in 
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the algorithm prohibits a single operation of inversion from arriving at an optimized 

solution.  The optimized solution is arrived at by iterating the above procedure, where 

each iteration depends on a recalculation of the sensitivity matrix.  In the computer this is 

fast, but the iteration time becomes a factor when the algorithm is implemented in 

feedback with the OPA.  

 

SVD design examples 

 It is useful to go through a few design examples.  The first will be the 2D CGH 

design for visible wavelengths for the CGH of Figure 3.1.  The second example covers 

the design of a 1D CGH, which is of interest since the OPA is inherently 1D.  The 1D 

design is also compared with an etched 1D CGH that was fabricated to model the OPA’s 

dimensionality and pitch. 

 

2D CGH design 

 The first step is to specify the design goal.  One of the typical designs is to have 

increasing efficiency with each order’s radial distance from the center.  This is illustrated 

in Figure 3.5(a) and is termed the uniform irradiance design.  The purpose of this design 

is to counteract the loss of energy that some FPA pixels see in the higher orders due to 

dispersion and thus make better use of the dynamic range of the camera.  The weights  
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 (a) (b) 

Figure 3.5:  (a) The goal amplitude pattern and (b) the weights applied to the orders in the algorithm. 

 

that are applied to the orders in the algorithm are shown in Figure 3.5(b).  There is a 

balance to be struck between the total efficiency in the desired pattern and the broadband 

match to the goal pattern when choosing the weights.  Also, the efficiencies of all the 

desired orders are designed to be spectrally flat.  Figure 3.6 shows the ideal spectral 

efficiencies with the zero order in red, the first orders in green, the second orders in blue, 

and the higher undesired orders (which will show up in the spectral efficiency plots of the 

actual designs) will be shown in black.  There are only 6 efficiency lines for the 25 orders 

because of redundancy in some of the first and second orders.  For example, the four 

corner orders are intended to have the same efficiency of just over 6.5%.   
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Figure 3.6:  The goal efficiencies of the orders for the uniform irradiance design.  For the 25 desired orders 

shown in Figure 3.5(a), there are six different desired efficiencies which increase with each order’s radial 

distance from the center.  The asterisks denote the design wavelengths. 

 

There are also two numbers that are used to characterize the simulated 

performance of a particular design.  These measure the match of the resulting diffraction 

orders to the goal pattern at the design wavelengths using a root-sum-square (rss), as well 

as the average of the efficiency of the desired orders over wavelength λη .  The root-sum-

square is given by: 
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The diffraction order amplitudes of the desired orders and the real and imaginary parts of 

the far-field undesired orders at all the design wavelengths are organized into the vector 

A.  The goal amplitudes of the desired orders and the real and imaginary parts of the far-

field undesired orders at all the design wavelengths are arranged into the vector G.  The 

design weights at the diffraction order locations at all the design wavelengths are 

organized into the vector F.  The number a provides a scaling factor between the goal and 

calculated diffraction orders.  The summation is over K points, which is greater than the 

number of the diffraction orders at all the wavelengths since the real and imaginary parts 

of the desired orders are separated.  The smaller the rss, the more closely the design 

matches the goal.  Designs that match the goal pattern well tradeoff total spectral 

efficiency, which is the second number: 
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where L is the number of design wavelengths and N’ is the number of desired orders.  

The efficiencies are calculated with respect to the light leaving the disperser and are not 

absolute efficiencies.   

The first example design is the 2D CGH of Figure 3.1.  The goal parameters are 

as stated above and a CGH cell size of q = 16 (16 x 16 phasels) is chosen.  Figure 3.7 

shows the spectral efficiency plots, and below the plot are images of the amplitudes of the 

orders at the design wavelengths (note that no effort has been taken to show the spatial 

expansion of the orders with wavelength due to dispersion).  The rss and λη  are listed 

along with the figures.  The design is fairly typical of a 2D design with nearly 74% of the  
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rss = 5.932 

λη = 0.739 

     

 0.470 um 0.515 um 0.569 um 0.635 um 0.720 um 

Figure 3.7:  Plot of the spectral efficiencies of the diffraction orders for the 2D uniform irradiance design, 

with images of irradiances at the design wavelengths shown below the plot. 

 

exiting light coupled into the desired pattern.  The grouping of the orders at different 

efficiency levels is apparent in the plot, especially for the four corner orders.  The rss 

measure is a useful comparison between results for different numbers of iterations or 

initial conditions, but is not useful for comparisons between different CGHs.  For 

example, the rss between this design and one with the same goal but with 8 x 8 phasels (q 

= 8) cannot be compared. 
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1D CGH design 

The next design is the 1D version with the same goal.  The goal spectral 

efficiencies are shown in Figure 3.8(b).  There are now only 5 desired orders and the goal 

efficiencies of the first and second orders are redundant.  Again, the CGH cell size is 

chosen to be q = 16 (note that the phase is now a 16 x 1 vector for the 1D design).  The 

results of the 1D uniform irradiance design are shown in Figure 3.9.  In this case over 

80% of the exiting light is coupled to the desired orders. 

  

 (a) (b) 

Figure 3.8:  (a) The 1D goal amplitude pattern and (b) the spectral efficiencies of the diffraction orders for 

the 1D uniform irradiance design. 
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rss = 2.087 

λη = 0.854 

     

Figure 3.9:  The spectral efficiencies of the diffraction orders for the 1D uniform irradiance design. 

 

1D etched CGH measurement 

The 1D uniform irradiance design was used to make a pair of 1D etched CGHs.  

The purpose of these CGHs is to model the physical parameters of the OPA.  The etched 

CGHs are identical and have 16 CGH pixels with a 2.5 um pitch.  The CGHs were etched 

into PMMA plastic on a glass substrate and have a 1” diameter clear aperture.   
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 (a) (b) 

Figure 3.10:  Photograph of the etched CGH on the left.  On the right, both 1D etched CGHs are mounted 

in rotary mounts and are crossed to effect a rectangular diffraction pattern and are shown next to the OPA. 

 

Figure 3.10(a) shows a photo of one of the etched CGH dispersers.  Figure 

3.10(b) shows both etched CGH dispersers in their rotary mounts and crossed to effect a 

rectangular grid of diffraction orders.  The OPA is shown alongside the etched dispersers. 

The procedure for determining the efficiencies is very similar to the procedure for CTIS 

calibration and the experimental set-up is shown in Figure 2.3, only here a single etched 

CGH replaces the polarizer and OPA in the CTIS.  First, a set of calibration images is 

taken covering the spectral range over which the diffraction efficiencies of the orders is 

desired.  The images are processed by a dark subtraction and thresholding to eliminate 

fixed pattern noise.  The thresholding becomes an issue for images with very low signal, 

but is not a problem here as the signal in the diffracted orders is nearly two orders of 

magnitude larger than the threshold value.  The locations of the orders in the images are 

determined and the total light that is coupled to each order is calculated as the sum of a 
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small pixel area (typically 50 x 50) surrounding that order.  The absolute efficiencies are 

obtained by dividing each spectral image by the incident light for each wavelength, which 

is acquired by simply repeating the acquisition with the CGH removed.  These images 

containing the incident light are also subjected to a dark subtraction and threshold.   

Figure 3.11 shows the spectral efficiencies of the etched CGH.  The blue lines are 

the second orders, the green lines are the first orders, and the red line is the zero order.  A 

quantitative comparison of the etched CGH to the simulation of Figure 3.9 is difficult 

because the absolute efficiencies of the etched CGH are being compared to the 

efficiencies of the design orders for the light exiting the CGH, the difference being the 

reflection, absorption, and scattering of the etched CGH.  The diffraction order  

 

λη = 0.815 

 

 

Figure 3.11:  Spectral efficiencies of the 1D etched CGH disperser. 
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efficiencies are not symmetric due to slight fabrication errors.  Also, with a 2.5 um phasel 

pitch (d = 5λ), the CGH is on the edge of the scalar diffraction model’s validity.  

Historically, the evaluation of the measured absolute efficiencies as shown in Figure 3.11 

is only qualitatively compared with the simulation of the efficiencies of the light leaving 

the CGH as shown in Figure 3.9.  The most noticeable differences between the two are 

the asymmetry of the spectral efficiency curves of the matching orders in Figure 3.11 and 

the slight deviation from the desired performance at high wavelengths (less light is 

coupled to the higher orders as compared with the simulation).  The total spectral 

efficiency average of the measured absolute efficiencies in the desired orders is only 4% 

less than the simulation.  Qualitatively speaking, this is a very good CTIS CGH with 

performance that closely matches the idealized simulation. 

 

SVD design convergence 

 A useful experiment is to constrain the SVD CGH design algorithm to operate as 

it would in feedback with the OPA.  This means that the real and imaginary parts of the 

dim orders cannot be constrained separately, and the goal of this simulation experiment is 

to gain some insight into the convergence of the algorithm.  The convergence of the 

algorithm will depend on the behavior of the phase correction vector, equation (3.20), and 

the rss, equation (3.21), as the algorithm iterates.  If the phase correction vector maintains 

large values, the algorithm is not properly constrained and will not converge.  On the 

other hand, if the phase correction vector approaches zero as the algorithm iterates, it has 

stabilized in at least a local minimum in the solution space.  The rss is a measure of the 
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solution’s match to the goal and indicates whether the algorithm has settled on a 

reasonable solution and is really doing what it is supposed to be doing.   

The phase correction vector provides information about the convergence of the 

algorithm and the rss provides information about the algorithm’s performance.  Four 

different versions of the algorithm are compared, each of which varies only its constraints 

on the phase correction vector.  The first version is the baseline algorithm where the real 

and imaginary parts of the low irradiance orders are constrained separately with no 

thresholding.  This corresponds to the 1D CGH design example of Figure 3.9.  The 

second version uses the amplitudes of all the orders with no thresholding.  The third 

version uses the amplitudes of all the orders and thresholds the smallest singular value by 

setting it to zero.  The fourth version uses the amplitudes of all the orders and a threshold 

value is chosen such that two or three of the smallest singular values are set to zero.  

Remember that the phase correction vector is proportional to the inverse of the singular 

values, so by thresholding small singular values the magnitude of the phase correction 

vector is limited.  The design goal in all four versions is identical to the 1D CGH design 

example with 16 phasels and has the same efficiency goal pattern as shown by the 

spectral efficiency plots of Figure 3.8.  All four versions are plotted in Figures 3.12(a)-

(d).  The red line is the first version (baseline), the black line is the second version (all 

amplitudes), the green line the third version (small threshold), and the black line is the 

fourth version (larger threshold).  Figure 3.12(a) plots the average of the modulus of the 

phase correction vector (in radians) as a function of iteration number.  This is calculated 

according to equation (3.23): 
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Notice that Figure 3.12(a) is a semi-log plot.  This number indicates the magnitude of the 

phase correction vector change from one iteration to the next.  If it stays high, as does the 

black line of version two (amplitudes with no threshold), the algorithm is not well 

  

 (a) Φδ  (b)  Φδσ  

 

 (c) - rss (d) - λη  

Figure 3.12:  (a) Average modulus of the phase correction vectors, (b) standard deviation of the phase 

correction vectors, (c) rss of the four designs, and (d) λη of the four designs. 
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constrained.  It turns out that in this case version two still converged.  Figure 3.12(b) 

plots the standard deviation of the phase correction vector.  This number indicates the 

uniformity of the phase correction vector change, but does not give significant 

information about algorithm convergence.  Notice that in all the plots, the first and fourth 

versions are very smooth while the second and third versions are ‘noisy.’  This is due to 

nonlinearities in these versions.  The first version reduces nonlinearities by separately 

constraining the real and imaginary parts of the dim orders while the fourth version 

reduces the nonlinearities by thresholding the small singular values.  The second and 

third versions are susceptible to nonlinearities at each iteration due to the small singular 

values that are retained.  Figure 3.12(c) plots the rss of each version.  This plot indicates 

that the nonlinearities do not necessarily prevent the algorithm from finding an optimum 

solution, though too much non-linearity error does have ill effects as can be seen from the  

plot for version two (the black line).  Figure 3.12(d) plots the average efficiency, λη , for 

each version.  The results here are similar to the rss – versions one and four give both 

high efficiency and converge smoothly, version two gives inferior (yet still ‘good’) 

results, and version three gives high efficiency but does not converge smoothly. 

 The main conclusion of this simulation is that CGH design results similar to the 

baseline algorithm (version one) are achievable without access to the complex electric 

fields.  CGH performance similar to etched CGHs (which represent the current state-of-

the-art CTIS disperser) is theoretically attainable with the OPA.  The experiment 

confirms that it will be necessary to threshold small singular values when the algorithm is 

used in feedback with the OPA to obtain a smoother convergence.  Smooth convergence 
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is important because there are a myriad of effects when implementing the design with the 

OPA that can throw the algorithm into wild behavior such as low signal, FPA noise, stray 

light, source stability, and the non-linear phase response of the OPA and its crosstalk.  

The limit of the thresholding was not explored.  It is expected that performance falls off 

with increased thresholding due to over-constraining the phase correction vector – i.e. the 

necessary information to perform the inversion will have been eliminated. 
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CHAPTER 4 – OPTICAL PHASED ARRAY 

OPA architecture 

 The tunable CTIS utilizes a transmission liquid crystal spatial light modulator (LC 

SLM) as its tunable disperser.  The LC SLM is borrowed from Raytheon Network 

Centric Systems (RNCS).  Raytheon created the device for beam steering applications, 

and thus they refer to the LC SLM as an Optical Phased Array (OPA) in direct analogy 

with traditional microwave phased arrays.  This particular device was fabricated in the 

early 1990s and is used as a portable demonstration device.  Figure 4.1 shows the OPA 

with its 37 pin connector plugged into its electronics base, which also is used to mount a 

polarized HeNe laser. 

 

Figure 4.1:  The Raytheon OPA.  (Courtesy of Raytheon Network Centric Systems) 
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A computer communicates with the electronics base via 10 base T raw ethernet 

packets.  The drive and control electronics were custom built for an 80486 based 

computer with an EISA bus.  The control has been adapted for use with the laptop seen in 

Figure 4.1 and the communications conform to an Ethane protocol.  It is uncertain what 

type of protocol Ethane is, and EISA (along with its drivers that the control program 

seems to use) is now obsolete.  Consequently, a good deal of effort was spent in 

developing communications with the OPA using current software.  Appendix A covers 

the details of the custom communications software that was developed for this project. 

For beam steering applications, Raytheon uses two OPAs.  One is ‘coarse’ and 

one is ‘fine’ in reference to coarse and fine beam steering.  Only the coarse OPA is used 

for this project and is shown in Figure 4.1.  The coarse OPA has an electrode width of 1 

um.  The clear aperture of the OPA is 4 cm square.  Given this large aperture and such a 

fine pitch there is a very large number of individual electrodes.  It is difficult to both 

fabricate and address such a large 2D pattern of electrode pixels, so Raytheon fabricated 

the device as two orthogonally crossed 1D LC cells that are independent of each other.  

To further ease the addressing of the OPA electrodes, each cell has 256 independently 

addressable electrodes that form a unit period that is repeated 84 times across the 4 cm 

aperture. 

The OPA works on the same principal as the etched CGH gratings – a phase 

profile pattern is realized by creating a spatial optical path distance pattern, OPD = n*d.  

The etched CGH changes d, while the OPA changes n.  The OPA uses nematic E7 liquid 

crystal.  This liquid crystal material contains anisometric ‘cigar’ shaped molecules.  
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Normal fluids are isotropic in orientation so that even though their molecules may be 

anisometric in shape, the macroscopic optical, magnetic, electrical, etc., properties are 

isotropic.  Nematic liquid crystals exhibit orientational order as in a solid yet still flow 

like a liquid.  The average molecular orientation is termed the director.  Smectic liquid 

crystals exhibit even more order and the flow is constrained to separate layers.  Figure 4.2 

shows a schematic of the three example states.  The orientational order of the anisotropic 

molecules of the nematic liquid crystal lead to anisotropic optical properties such as 

birefringence, which is the mechanism used to change the index of the liquid crystal 

material to achieve phase shifting with the OPA.   

 
Isotropic Nematic Smectic 

Figure 4.2:  Isotropic, nematic, and smectic molecular states.  The nematic, with its anisotropic optical 

properties, is the type used in the OPA.19 
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 (a) (b) 

Figure 4.3:  (a) Cross-sectional and (b) face on schematic views of the OPA.7 

 

Figure 4.4:  Schematic of the ‘on’ and ‘off’ positions of a single OPA electrode and the non-linear phase 

response with applied voltage.7 
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The liquid crystal cell is formed by sandwiching a thin layer of liquid crystal 

between two substrates, which is schematically represented in Figure 4.3(a).  The outside 

of one of the substrates is patterned with the transparent electrodes, and a transparent 

ground plate is laid across the entire area of the outside of the other substrate.  The 

insides of the substrates are scored with an alignment layer that gives a preferential 

orientation to the molecules adjacent to its surface.  Mechanical forces within the material 

align the rest of the molecules in the volume.  The component of an incident optical field 

parallel to the long axis of the liquid crystal molecules will then see the extraordinary 

index of refraction, ne, of the liquid crystal.  This is illustrated in the ‘off’ position of 

Figure 4.4.   

Applying a voltage to the electrodes of the OPA causes the liquid crystal 

molecules to align with the electric field, which alters the index towards that of the 

ordinary index, no, for that same component of polarization.  The voltage at which the 

molecules begin to align with the field is the threshold voltage, Vt, and the voltage at 

which the molecules are completely aligned with the field is the saturation voltage, Vs.  

The dynamic phase range that the OPA can achieve is given by a modified form of 

equation (3.1): 

( )
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2                                        (4.1) 

The birefringence, ∆ = ne – no, is 0.2 for nematic E7.  To obtain a phase shift of one 

wave, d/λ needs to be 5.  The original beam steering application for the OPA was at a 

wavelength of 1.06 um, and thus it was made with a thickness near 5 um.  The molecular 
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orientation is responsive to the rms value of the applied voltage, which is a sinusoid in 

the 1 to 10 V range at 1 to 10 kHz. 

 

Response time 

 One of the major features of liquid crystal materials is switching speed.  How fast 

the LC can change from one molecular orientation to another depends on the liquid 

crystal’s viscosity, γ, its effective relaxation constant, κ, the operating temperature, the 

applied voltage, and the thickness of the cell.  The Leslie-Ericksen equation20 is used with 

some simplifying assumptions to define the decay time and rise time of the liquid crystal 

director as:7 
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These equations are for a uniform phase profile.  Even so, the quadratic scaling of the 

decay time with thickness, t, is still valid for more complex profiles.  For most cases, the 

decay time limits the liquid crystal switching speed.  Increasing the operating temperature 

decreases the viscosity, and thus decreases the switching speed up to the point where the 

phase transition temperature to that of an isotropic liquid is reached.  For E7, this 

temperature is near 610 C.  For the OPA, the switching speed is near 4 ms and will not 

limit the speed of the CGH design algorithm.  The speed limit for the algorithm is set by 

the frame rate of the camera, which is 15 fps, or 66 ms. 
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Flyback 

 One of the major difficulties of using fine pitch liquid crystal spatial light 

modulators is inter-electrode crosstalk, which is often referred to as ‘flyback’  The term 

flyback originates from beam steering applications in which the ideal phase profile is a 

ramp that uses 2π phase resets to keep the needed phase dynamic range to reasonable 

levels.  The result is a sawtooth phase profile.  Flyback is the inability of the device to do 

a 2π phase reset between adjacent electrodes, causing a reduction in the efficiency of the 

steered beam.  Figure 4.5 depicts a simple phase versus position plot for a single period 

of a phase sawtooth wave that illustrates flyback.  Equation (4.3) shows the 

approximation of the efficiency of the desired order for a phase ramp that exhibits 

flyback.7  The duty cycle of the sawtooth wave is Λ, and the flyback distance is ΛF. 
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There are two root causes of the inter-electrode crosstalk.  The first is the 

complicated fringing electric fields within the liquid crystal media that affect the 

orientation of the director in the spatial area of neighboring electrodes.  The second is the 

mechanical stress on the LC molecules due to reoriented nearest neighbors.  Figure 4.6 

illustrates the extreme case of crosstalk with the desired phase between adjacent 

electrodes switching between the entire dynamic range.   
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Figure 4.5:  A single period of the sawtooth phase ramp illustrating flyback.7 

 

Figure 4.6:  Illustration of flyback as a type of inter-electrode crosstalk between the molecules of adjacent 

electrodes due to complicated fringing electric fields. 

 

A rule of thumb is that the lateral extent of the crosstalk is equal to the liquid 

crystal cell thickness.  For the OPA, this means that the applied voltage at one electrode 

can affect the orientations of the molecules, and thus the phase of the incident light, up to 

two electrodes away.  This is the primary reason that the desired phase profiles cannot be 

designed a priori in the computer and simply programmed to the OPA using the 

appropriate voltages.  Flyback forces the use of some type of feedback algorithm where 
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the OPA electrode voltages are changed based on the detected irradiances by the CTIS 

camera.  Another factor that prevents the direct programming of phases to the OPA is the 

previously mentioned non-linear phase response with applied voltage, which is the 

subject of the next section. 

 

OPA phase response 

 The phase delay of the OPA is not a linear function of the applied voltage.  

Generally the response follows the curve shown in Figure 4.4.  Obtaining the phase vs. 

voltage response of the OPA can be done by using a common path interferometer, and 

this was done using a WYKO 6000 laser based Fizeau.  The OPA was placed in the 

collimated space between the WYKO and a reference flat that was adjusted to introduce a 

few waves of tilt parallel to the electrodes of the LC cell under test.  The voltages of the 

OPA electrodes are all changed together, and the resulting straight-line fringes travel in 

the direction perpendicular to the electrodes.  Whenever a fringe travels a full period, the 

voltage has caused a phase delay of 2π at a wavelength of 633 nm (the WYKO uses a  

 

Figure 4.7:  Fringe shifts in the WYKO experiment due to changing the voltage of the horizontal OPA 

electrodes. 
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HeNe laser for its illumination).    Figures 4.7(a-c) show the fringe shifts of the WYKO 

experiment.   

Qualitatively, this test showed between two and three waves of dynamic range at 

this wavelength for the OPA.  However, the quantitative results were inconclusive due to 

unacceptable fringe drift.  The WYKO is not set up to automate this process and it takes a 

human controller close to 40 minutes to get a reasonable data set to infer the phase vs. 

voltage response.  The data acquisition needs to take place within a minute or two to 

avoid the fringe drift.  The common path interferometer is extremely sensitive to air 

currents and temperature changes.  An easier approach is to calibrate the OPA as a binary 

phase grating.   

 

Binary phase grating 

 A binary phase grating is completely transmitting and has only two phase levels.  

Thus it is easy to analytically calculate the far-field amplitudes of the ideal binary phase 

grating.  The ideal binary phase grating has a square wave phase profile in 1D, as shown  

 

Figure 4.8:  The ideal 1D binary phase profile. 
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in Figure 4.8.  The OPA cannot perform as the ideal binary phase grating (nothing can 

because of the discontinuity at the transition between the two phases) due to flyback.   

However, when the maximum period available with the OPA is used (256 electrodes), the 

ideal binary phase grating serves as a good approximation.  The transmission of the ideal 

binary phase grating is: 

⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛= +−

h
xcomb

hb
hxrecte

b
xrectext mimi

22
1*)( 22 ππ             (4.4) 

where m = ½ for a full 2π phase delay, * denotes the 1D convolution, and the comb 

function is defined by Gaskill21 as: 
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Given a normally incident, unit amplitude plane wave, the complex electric field in the 

Fraunhofer region is the Fourier transform of equation (4.4). 
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The diffraction order locations are at ξ = n /(2h), where n is an integer ranging from 

positive to negative infinity.  Equation (4.6) then reduces to: 

( ) ( )nsinceeeE nimimi
n 2

122 πππ −− +∝                                (4.7) 

Note that the weight of the delta functions in the comb is 1/(2h) from the definition.  The 

diffraction efficiency of the orders is given by the squared modulus of equation (4.7): 
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Equation (4.8) gives the diffraction order efficiencies of the ideal binary phase 

grating as a function of the phase difference (m) between the two levels.  The zero order 

(n = 0) efficiency is a cosine-squared function of the phase difference.  All the higher 

even orders do not exist as they fall on the zeros of the sinc function.  The odd diffraction 

orders are symmetrical and they follow the same cosine squared function as the zero 

order except that they are shifted by π/2, or equivalently they follow a sine-squared 

function rather than a cosine-squared function.   

 

Figure 4.9:  Efficiency as a function of phase difference for the ideal binary phase grating.  The zero order 

is black, the first orders are red, the second orders are green, and the third orders are blue. 

 

The amplitude of the cosine squared functions of the higher odd orders is 

determined by the sinc-squared function, and nearly 82% of the light is coupled to the 

first orders when m = ¼ (the peak-to-valley phase difference is π).  At this phase 

difference, the zero order vanishes.  Figure 4.9 shows the efficiencies of the zero, first, 
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second, and third orders of the ideal binary phase grating as a continuous function of the 

phase difference.  The zero order is shown in black, the first orders are red, the second 

orders (a constant zero is this case) are green, and the third orders are blue.   

 The binary phase experiment with the OPA is, once again, very similar to 

calibration.  The polarizer and OPA are placed in the CTIS as shown in Figure 2.3, and a 

spatial/spectral point source is placed on axis in the field stop using the calibration 

apparatus.  The CTIS camera acquires the resulting diffraction orders.  The voltages that 

are applied to the first 128 adjacent electrodes of the OPA are held at a constant level 

while the other 128 adjacent electrodes are changed uniformly to some other voltage.  

Keep in mind that this pattern is repeated 84 times as there are 84 of these 256 electrode 

unit cells in the construction of the OPA – this is the binary square wave.  The irradiance 

of the acquired diffraction orders is normalized by the irradiance when all the electrodes 

are held to a constant voltage (i.e. m = 0).  The resulting data set contains the efficiencies 

of the orders.  This is repeated 199 times while increasing the voltage through its entire 

dynamic range.  The data for the efficiency of the any of the orders can then be fit to 

equation (4.8), and this then determines the phase delay of the OPA electrodes as a 

function of applied voltage.  The fit has been done with both the zero and first orders, and 

the results presented here use the first order.  The reason for this is to get a smoother ‘cut 

on’ transition for the phase vs. voltage curve, as this is difficult to do using the zero order.   

 As mentioned previously, the OPA was constructed for use at 1.06 um 

wavelength light, and thus it has an anti-reflection coating optimized for this wavelength.  

It turns out that this coating causes the transmission of the OPA to fall off rapidly 
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between 500 nm and 600 nm.  The ideal wavelength range is between 450 nm and 720 

nm, however, this becomes impractical due to low transmission at the lower wavelengths.  

Thus a wavelength band from 550 nm to 720 nm is considered instead.  Figure 4.10(a) 

shows the results of the binary phase experiment at λ = 625 nm, and Figure 4.10(b) 

shows the resulting phase vs. voltage response using a fit to equation (4.8) with the 

negative first order. 

The results shown in Figure 4.10 plot the efficiency and phase versus ‘voltage 

number’ rather than voltage with units of volts.  The control program sends the voltage to 

be applied to the OPA as a 10 bit number which the electronics base then translates into 

an actual rms voltage amplitude.  The voltage amplitude scales linearly with the 

quantized number that controls it, and the plots shown in Figure 4.10 simply use 

 

 (a) (b) 

Figure 4.10:  (a) Binary phase data for the first three orders and (b) the phase vs. voltage fit for the zero 

order. 



 77

that quantized number for the abscissa.  The experimental data set consists of 199 images 

taken at every 5th voltage number, thus the data set contains information from voltage 

number 0 – 990.  The last six data points up to 1020 are not taken due to the 

particularities of the device stated in Appendix A. 

It is useful to point out a few things about the data in Figure 4.10(a).  Since there 

appears to be about 2 periods of the cosine-squared function of the zero order, the 

dynamic range at this wavelength appears to be about 4π.  Notice that the zero order 

efficiency does not return to 1.0 (which is 100%) at 2π phase delay.  This is due to a 

small amount of flyback for this period.  The phase vs. voltage number for this 

wavelength is plotted in Figure 4.10(b).  It is reasonable to assume that the results simply 

scale with wavelength, and the experiment was identically carried out at λ = 550, 575,  

 

 (a) (b) 

Figure 4.11:  The phase vs. voltage number response (a) at λ = 550, 575, 600, 625, 650, 672, 700, and 720 

nm (top to bottom, respectively) and (b) all scaled to the 625 nm wavelength. 
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600, 625, 650, 675, 700 and 720 nm.  The data for each experiment was normalized for 

the 625 nm wavelength and plotted in Figure 4.11(b) for comparison.  The jog in the data 

at 2π phase (near a voltage number of 200) is due to the fit of the data.  An argument 

could be made that the scaling assumption is valid up to 2π phase delay, but the results 

show that phase vs. voltage response does not satisfactorily scale with wavelength.  The 

reason for this is found in the anti-reflection coating of the OPA.  It is thought that there 

are etalon effects that take place within the AR coating at visible wavelengths.  This then 

changes the phase vs. voltage response for different wavelengths. 

 It is also easy to get an idea of the effect of the flyback by repeating the binary 

phase experiment at different electrode periods.  Figure 4.12 shows the results of the 

binary phase experiment at electrode periods of 2 (where every other electrode is held to 

a constant voltage and their adjacent neighbors are uniformly changed to some other 

voltage), 8, 32, and 256 for comparison with Figure 4.10, all at λ = 625 nm. As expected, 

for periods of less than 32 electrodes, the binary phase model for the OPA is no longer 

valid due to flyback.  In fact, the results look more like what would be expected from a 

sinusoidal phase grating.  The flyback serves to smooth the square wave phase profile to 

a sine wave profile, as well as damp the phase dynamic range. 
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 (a) (b) 

 

(c) (d) 

Figure 4.12:  The binary phase experiment data at four different OPA electrode periods:  (a) 256, (b) 32,     

(c) 8, and (d) 2. 
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OPA transfer function 

The binary phase experiment has been useful in characterizing the phase response 

of the OPA and confirming that it behaves as expected.  Another interesting aspect of the 

binary phase experiment is that the resulting diffraction orders are the frequency 

components of the profile that was programmed to the OPA.  Perhaps linear systems 

theory could be utilized to characterize the transfer function, H(ξ), of the OPA when it is 

programmed as a binary phase grating.  The binary phase profile of the OPA can be 

thought of as a function f(x) with frequency content F(ξ) that is found by taking its 

Fourier transform.  The resulting diffraction pattern in the focal plane of the reimaging 

lens can be thought of as a function G(ξ) that is the result of the product of F(ξ) with the 

transfer function of the optical system, i.e., G(ξ) = H(ξ)F(ξ).  The diffraction pattern 

acquired via the experiment is G(ξ), and the transfer function of the OPA is found by 

calculating H(ξ) = G(ξ)/F(ξ).   

An important distinction to be made here is that this is not the optical transfer 

function (OTF) of the OPA, but rather the transfer function of the ‘linear system’ as a 

black box.  The situation is depicted in Figure 4.13, where the input/output relationship is 

a convolution of the input with the point spread function (PSF) of the system.  The input 

is the digital signal sent to the OPA, f(x), and the output is the far-field irradiance, G(ξ). 
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Figure 4.13:  Schematic of input/output relationship of a general linear shift invariant (LSI) system. 

 

The reason that the output is G(ξ) rather than g(x) is because of the way the system is set 

up, which is identical to Figure 5.5(b) in Goodman22 and is repeated as Figure 4.14 here. 

 

Figure 4.14:  Positive lens as a Fourier transformer.22 

 

The OPA is modeled as a planar input transparency with transmittance t(x,y).  Assuming 

this input transparency is uniformly illuminated by normally incident, monochromatic 

plane waves of amplitude A the disturbance just after the OPA using Goodman’s notation 

is: 

),(*),( yxtAyxUl =           (4.9) 
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The electric field distribution in the back focal plane of the lens, assuming that the 

Fresnel approximation holds and the spatial extent of the OPA is less than the lens, is: 
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where k is 2π/λ.  The electric field is then the incident light amplitude times a quadratic 

phase factor times the Fourier transform of the transparency - in this case, the OPA.  In 

the case where the transparency is placed one focal length from the lens, d = f, the phase 

factor disappears and the electric field in the focal plane of the lens is exactly a scaled 

Fourier transform of the OPA transmittance.  The diffraction pattern that the CTIS 

camera acquires, then, is the squared modulus of the frequency spectra of the input, 

which in the case of the binary phase grating is a binary phase square wave.  The digital 

signal that is sent to the OPA is a square wave – the OPA flyback causes the transparency 

to be something else by affecting its transfer function, H(ξ).  The procedure is to simply 

divide the square root of the acquired diffraction pattern by the Fourier transform of the 

input signal to obtain the transfer function of the OPA.  It is most convenient to do this 

using the efficiencies from the binary phase experiment, which are essentially normalized 

diffraction order weights. 

 Consider the binary phase experiment at the 625 nm wavelength with a 256 

electrode period.  If the frequency of the phase square wave is denoted as ξo, the 

diffraction efficiencies at each of the orders are the square of the frequency components 

at locations n/ξo, where n is an integer denoting the order number and ranges from 



 83

negative to positive infinity.  The theoretical efficiencies are given by equation (4.8) for 

some binary phase difference m.  Now consider the experiment at the same wavelength 

and binary phase difference m, but with the period halved.  The frequency of the square 

wave is now ξo/2, and the frequency components are located at 2n/ ξo.  For all eight 

possible periods, q = 0 to 7, the frequency components will be located at 2(q)n/ξo, where 

the square wave period is 256/2q.  For example, the location of the 3rd order for a square 

wave with a 2 electrode period (q = 7) falls on the location of the 3*128th order of the 256 

electrode period (q = 0) square wave.  Figure 4.15 shows the locations of the orders in 

frequency space of the frequency components of the first few input periods.  The left 

column of the figure shows the square wave period.  The numbers in the table indicate 

the order (n) for that period at the frequency location shown by the top row.   

 1/ξo       8/ξo        16/ξo
256 
q = 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

128 
q = 2 

 1  2  3  4  5  6  7  8 

64 
q = 3 

   1    2    3    4 

32 
q = 4 

       1        2 

Figure 4.15:  Frequency locations of the diffraction orders for the first few square wave periods. 

 

For the ideal binary phase grating, the even orders do not exist, and the table of 

Figure 4.15 shows that the odd orders from one particular period overlap with only the 

even orders of the higher period square waves.  Thus the diffraction orders of all eight 

periods can be superimposed on a single plot.  This has been done out to the third order 
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of the period 2 square wave grating (q = 7).  This gives 769 frequency components, from     

–384/ ξo to +384/ ξo.   

 Dividing the diffraction efficiencies of the experimental data at the 625 nm 

wavelength for all 8 square wave periods by the corresponding efficiencies calculated by 

equation (4.8) yields the irradiance transfer function (as opposed to the amplitude transfer 

function) that is shown in Figure 4.16(a).  Figure 4.16(a) is derived from the data of 

Figure 4.16(b) which overlays the experimental efficiencies with the calculated 

efficiencies.  The red lines of Figure 4.16(b) denote the calculated efficiencies with the 

red asterisks denoting the frequency locations of the first orders of the various square 

wave periods and the blue asterisks denoting frequency locations of the third orders.  The 

black lines show the detected efficiencies of the corresponding orders at their correct 

frequency locations.  Figures 4.16(a) and (b) only show the frequency components (i.e. 

diffracted orders), from -16/ξo to +16/ξo.  Figure 4.16(c) shows the same transfer function 

with the range extended to |64/ξo| and Figure 4.16(d) shows it again with the full range 

out to |384/ξo|.  Flyback causes the transfer function to act as a low pass filter so that very 

little light is coupled to the higher odd orders.  This particular transfer function is for 

electrode number 120, which corresponds to a phase difference in the binary phase 

experiment of ϕ = 0.2984π at the 256 electrode period.  This phase difference was chosen 

for the calculated efficiencies to give a value of 1 for the zero frequency component of 

the transfer function. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.16:  (a) The transfer function of the OPA at electrode value 120.  (b) The theoretical efficiencies 

(red) with red asterisks denoting the first orders and blue asterisks denoting the 3rd orders overlaid with the 

detected efficiencies (black).  (c) The transfer function plotted out to 129 components.  (d) The transfer 

function plotted out to 769 frequency components. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.17:  (a) Transfer function with electrode value 200 for the lowest 33 frequency components.  (b) 

The same transfer function for all 769 frequency components.  (c) The transfer function with 64 frequency 

components showing where the function exceeds 1.  (d) The theoretical and detected efficiencies overlaid 

showing why certain components of the transfer function exceed 1. 
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 The system is, in fact, not linear when all of the available periods are analyzed.  

To characterize the binary phase experiment of the OPA with a transfer function is a 

viable approach for electrode periods 256 through 32, but this approach breaks down with 

the inclusion of the higher frequency square waves.  As an example, Figure 4.17 shows 

the transfer function for a different electrode value, this time at 200, which corresponds to 

ϕ = 0.8648π at the 256 electrode period.  Figures 4.17(a) shows the transfer function at 

the low frequencies, and Figure 4.17(b) shows the transfer function with all of the 

frequency components that were detected, and some of the components exceed 1!  The 

reason is simply that the theoretical phase value of 0.8648π does not match well for the 

higher frequency components and the detected efficiencies are divided by a theoretical 

value that is lower, and thus the transfer function implies gain.  Figures 4.17(c) and (d) 

illustrate the offending components.  Figure 4.18 shows this effect in the efficiency vs. 

voltage plots for electrode periods of 256, 8, 4, and 2.  The vertical green lines show the 

electrode value locations (120 and 200, respectively) for the transfer functions of Figures 

16 and 17.  Not only does the behavior of the efficiencies change from that of a square 

wave phase CGH to that of a sin wave phase CGH (a Jo Bessel function rather than a 

sine-squared function), the amplitude of the CGH wave changes as well.  As expected 

with the flyback, a voltage number of 200 means a smaller peak to valley phase 

difference at the 2 electrode period than the 256 electrode period because the adjacent 

values pull the ‘high’ phase pixels down and the ‘low’ phase pixels up, thus damping the 

phase amplitude. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.18:  Efficiency vs. voltage number plots of the binary phase experiment for periods of 256, 8, 4, 

and 2.  The plot in (a) shows that the efficiency follows a sinusoid squared function that is characteristic of 

a phase binary square wave and is distorted due to the nonlinear phase response of the OPA.  The plot in 

(d) shows that the efficiency more closely follows a Bessel function that is characteristic of a phase sine 

wave.  Plots (c) and (d) transition between the two states. 
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In other words, the phase vs. voltage response of the OPA changes for the small period 

binary phase experiments. 

 Since the binary phase experiment yields the frequency components of the phase 

function that actually exists on the OPA, the inverse Fourier transform of the components 

can be taken to see what kind of function it is.  Figures 4.19(a)-(d) show the reconstructed 

phase profiles from the binary phase experiment for periods 256, 8, 4, and 2 for voltage 

levels 145, 165, 250, and 400, respectively.  The voltage levels were chosen to give a π/2 

phase difference between the two levels for the given period.  As expected, the 256 

electrode period resembles a square wave, and the 2 electrode period looks like a sine 

wave with less phase amplitude. 

For use as a CTIS disperser, more complicated phase profiles will be needed 

where the phases between adjacent electrodes must differ.  It is not possible to fully 

characterize the OPA in order to directly program the correct voltages to the OPA to 

realize a phase profile that is designed a priori in the computer.  Fortunately, the CGH 

disperser design with the OPA can be done experimentally. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.19:  Reconstructed phase profiles from the binary phase experiment for electrode periods of (a) 

256, (b) 8, (c) 4, and (d) 2. 
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Feedback CGH design 

 The CGH design algorithm used with the OPA is a modified version of the SVD 

CGH design method that was developed in Chapter 3.  When the OPA is used as the 

CTIS disperser, an ‘applied voltage’ profile is designed rather than a phase profile.  The 

crux of the SVD CGH design algorithm is that far-field amplitude changes are linearly 

related to small CGH phase changes.  In order to use the algorithm with the OPA, the far-

field amplitude changes need to be linearly related to small applied voltage changes.  The 

phase as a function of applied voltage is non-linear, but it is a well behaved function (see 

Figure 4.10(b)) with no discontinuities so it is reasonable that: 

dVolt
d

d
dA

dVolt
dA Φ

Φ
=       (4.9) 

The inversion step of the algorithm can be rewritten as: 

ee AUWVAVolt ∆−=∆−= −+ t1~Hδ          (4.10) 

where δVolt is the voltage correction vector (not to be confused with V, which is the 

matrix of voltage perturbation modes).  The sensitivity matrix is constructed using 

amplitude change to voltage change ratios rather than amplitude change to phase change 

ratios. 

 This adaptation to the SVD CGH design is referred to as the ‘feedback’ CGH 

design algorithm and the experimental setup is once again very similar to that of CTIS 

calibration.  A spatial/spectral point source is placed on axis in the plane of the field stop 

using the calibration equipment.  The main difference between the feedback design and 

calibration is that with the feedback design, the reimaging lens focal length needs to be 



 92

adjusted.  Typically this focal length is set to maximize the footprint of the desired orders 

on the array and all of the higher orders fall off of the array.  For the algorithm, these 

higher orders are needed and it is simplest to just shorten the focal length of the 

reimaging lens accordingly.  For example, for a 1D design that uses 8 electrodes in the 

unit cell, eight orders (usually from –4 to +3) will need to be collected. 

 The three major modifications to the SVD CGH design algorithm for use in 

feedback with the OPA are (1) thresholding the smallest few singular values, (2) damping 

the voltage correction vector, and (3) strictly constraining the voltage range of the voltage 

correction vector.  As discussed at the end of Chapter 3, thresholding of the smallest few 

singular values is necessary due to nonlinearities, especially with access only to far-field 

amplitudes and not the complex electric fields.  This thresholding eliminates the wildly 

varying elements of the voltage correction vector.  Damping the voltage correction vector 

imposes a global constraint that causes the algorithm to approach a solution slowly and in 

a stable manner.  For the damping, the voltage correction vector was divided by 7.  This 

number is chosen based on experience to limit the range of voltage correction to less then 

200 (20% of the dynamic range).  These two modifications affect the stability of the 

algorithm’s convergence, though it is entirely possible that the voltage correction vector 

will still cause some of the applied voltages to be corrected outside the possible range. 

In the conventional SVD CGH design algorithm in the computer, the dynamic 

range of phases is inconsequential because at any particular phasel a multiples of 2π at 

the design wavelength can be subtracted with little effect to the amplitudes in the 

irradiance plane.  If the corrected voltage numbers to be applied the OPA extends above 
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1023 or below 0, it is unknown what voltage number to subtract (or add) that corresponds 

to a multiple of 2π phase.  Therefore, the offending elements of the voltage correction 

vector are reset to the center of the voltage dynamic range and it is left to the next 

iteration to adjust them to the correct value.  These modifications have been successful 

and the feedback design converges to a reasonable CGH. 

 The two crossed LC cells of the OPA are denoted as channel 5 for the horizontal 

electrodes (vertical orders) and channel 6 for the vertical electrodes (horizontal orders), 

which is how they are denoted in Raytheon’s software.  The results of the feedback CGH 

design with the same goal as the 1D example of Chapter 3 was performed and the results 

for channel 6, the vertical electrodes, are shown in Figure 4.20 below.  Figure 4.20(a) 

shows the relative efficiencies of the diffracted orders.  The relative efficiencies are 

calculated by dividing each order by the total light that falls on the array.  Figure 4.20(b) 

shows the absolute efficiencies, which are calculated by using the incident light that is 

acquired when the OPA is removed.  Figure 4.21 shows the reason for the radical 

difference between the relative and absolute efficiencies of the OPA, which is the spectral 

transmission of the OPA.  Because of the AR coating, the OPA has a steep spectral 

transmission curve that dominates the absolute efficiencies.  The relative efficiencies give 

a better assessment of the performance of the feedback design, which compares well with 

the etched CGH of Figure 3.12.  If both channel 5 and channel 6 of the OPA are 

programmed to have the response shown in Figure 4.20, the instrument will be a 5 x 5 

CTIS, meaning it will have a grid of 5 x 5 projections from which to reconstruct the data 

cube and is typical of many of the CTIS instruments that have been made in the lab. 
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 (a) (b) 

Figure 4.20:  (a) Relative efficiencies of the OPA and (b) absolute efficiencies of the OPA.  The zero order 

is plotted in red, the first orders green, and the third orders blue. 

 

Figure 4.21:  Transmission of the OPA. 
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 (a) (b) 
 

 
(c) (d) 
 

Figure 4.22:  Comparison of the efficiency plots of (a) the CGH design goal, (b) simulation, (c) measured 

relative efficiencies of the etched CGH, and (d) measured relative efficiencies of the OPA CGH design. 

 

Figures 4.22(a)-(d) show the spectral efficiency plots of the CGH design goal, simulation, 

measured relative efficiencies of the etched CGH, and measured relative efficiencies of 

the OPA CGH design for comparison.  Note the powerful advantage of the feedback 

CGH design in ‘real time’ with the OPA.  Figure 4.22(d) can be achieved in a day, 

whereas Figure 4.22(c) constitutes shipping a CGH design to a willing and competent 

vendor, paying for it, waiting for it to be shipped back, and testing it to see whether or not 
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it worked.  After testing, provided the CGH performs well (JPL has continued to etch 

excellent CGHs), you can’t change it.  Besides the practical factors listed above, another 

major advantage of the feedback CGH design is that the design is changed according the 

measured results. 

The convergence of the feedback algorithm can also be plotted for comparison 

  

 (a) Vδ  (b)  Vδσ  

 

 (c) - rss (d) - λη  

Figure 4.23:  (a) Average modulus of the voltage correction vector, (b) standard deviation of the voltage 

correction vector, (c) rss of the design, and (d) λη of the design. 



 97

with Figure 3.12 in the convergence section of Chapter 3.  The plot of the average 

modulus of the voltage correction vector, the average variance of the voltage correction 

vector, the rss, and the spectral average of the efficiency in all of the desired orders as a 

function of iteration number are shown in Figure 4.23. 

The comparison between the OPA design of Figures 4.23(a) and (b) and the CGH 

design convergence of Figures 3.12(a) and (b) are not direct – the former depends on a 

voltage correction vector in units of ADUs, and the latter depends on a phase correction 

vector in units of radians.  They show that the stability of the OPA algorithm is analogous 

to version 3 in Figure 3.12, where there is thresholding of only the smallest singular value 

in the simulation.  Two things to take note of are the differences between the simulation 

results in Figures 3.12(c) and (d) and the actual design with the OPA in Figures 4.23(c) 

and (d).  First, the root-sum-squares, or rss, which measures the match to the desired goal 

pattern takes more iterations to settle to a minimum value in the feedback design with the 

OPA.  This is a manifestation of the damping of the voltage correction vector.  Second, 

the efficiency in the desired pattern starts off very high in the feedback design with the 

OPA.  This is because nearly all the light is in the zero order at that iteration, and the 

efficiency drops off as light is diffracted to higher orders as the voltage vector is 

corrected.  The efficiency rises once again as the light that is taken from the zero order is 

actually put into the correct higher orders that correspond with the desired diffraction 

pattern. 
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Voltage dependent scatter 

 The results of the feedback design in the previous section are presented for only 

channel 6 of the Raytheon OPA, which is the vertical electrode LC cell.  The reason for 

this is that the other cell, channel 5, exhibits behavior that appears to be ‘voltage 

dependent scatter.’  Through most of the dynamic phase range of this LC cell 

(corresponding to voltage numbers between 0 and 300) a point source placed on axis in 

the field stop will be scattered by the OPA to image to a smear of light on the FPA.  

Figure 4.24 below shows images (in reverse contrast) of this scattering for voltage values 

of 0, 50, 100, 150, 200, and 300.  All electrodes are changed to the same voltage number, 

and channel 6 is held to a constant voltage number of 0.  The scattering is discrete in 

nature with a very fine spacing between the points (thus perhaps ‘voltage dependent 

grating ghosts’ would be a more appropriate term).  This leads to the conclusion that 

there is some periodic error in the voltages that are applied to the electrodes.  It seems as 

though for small voltage values, each group of 256 electrodes across the OPA have 

different voltages leading to a large period grating effect.  Raytheon is of the opinion that 

there may be corrosion of the electrodes that cause the voltages to differ between groups 

of electrodes for small voltage values.23 

 This voltage dependent scatter has thus far thwarted attempts to perform the 

feedback CGH design with this LC cell.  Consequently, the implementation of tunability 

in the next chapter is performed in 1D varying only the vertical electrode LC cell while 

holding this horizontal electrode cell to a high constant voltage level at which the 
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scattering is a minimum.  Diffraction in the vertical direction is achieved by using one of 

the 1D etched CGHs that are described in Chapter 3. 

 

 (a) (b) (c) 

 

 (d) (e) (f) 

Figure 4.24:  CTIS images of a point source as channel 5 (the horizontal electrode LC cell) of the OPA is 

changed to voltage numbers (a) 0, (b) 50, (c) 100, (d) 150, (e) 200, and (f) 300. 
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CHAPTER 5 – TUNABLE CTIS 

Tunable CTIS parameters 

 Given a successful demonstration of the Raytheon OPA as a tunable CTIS 

disperser from Chapter 4, the subject of this chapter is the implementation of that 

tunability.  The electronically tunable disperser allows three of the CTIS parameters to be 

altered:  (1) the grating period of the disperser, (2) the number of diffraction orders (i.e. 

reconstruction projections), and (3) the efficiency of the orders as a function of 

wavelength. 

Changing the first parameter, the grating period, changes the dispersion across the 

CTIS FPA, and thus the spectral resolution limit of the instrument can be altered.  

However, this may cause some orders to fall off the array if the grating period is too 

small.  Conversely, if the grating period is too large the FPA is being used inefficiently 

and there is also the possibility that the first orders will start to overlap with the zero 

order, which is unacceptable for reconstruction.   

Changing the second parameter, the number of diffraction orders on the FPA, 

amounts to trading off reconstruction quality for reconstruction time and signal to noise 

ratio, both of which depend on the number of projections from which the data cube is 

reconstructed.  An example of combining these first two parameters is the case where 

more signal to noise ratio is desired for a CTIS with a 5 x 5 grid of diffraction orders 

without reducing the spectral resolution of the reconstructions.  The light in the second 

orders is coupled to the first orders so that there is now a 3 x 3 grid of diffraction orders, 
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and the grating period is halved so that the dispersion of the first orders equals that of the 

second orders in the original 5 x 5 configuration. 

 The most interesting, and difficult, parameter to change is the third parameter, the 

efficiencies of the diffracted orders as a function of wavelength.  An example of the 

utility of this parameter is to design the disperser such that the efficiency of a particular 

diffraction order as a function of wavelength is the inverse of the background of a scene, 

and thus the background is ‘whitened’ in that order.  If there is an object in the field of 

view that has a spectra other than that of the background, it can be identified directly 

from the raw CTIS image before reconstruction.  Other things have been suggested as 

well, such as programming a spectral modulation to the orders that may spread 

information into the frequency region of the missing cone (see Chapter 3), or perhaps 

something analogous to phase shifting interferometry24 could be done by taking several 

images with different disperser configurations.  In this case, the thought is that the images 

could be used to determine the 3D data cube without using the current MART and EM 

reconstruction algorithms. 

 Experimentally, it is difficult to demonstrate tunability by changing the spectral 

efficiencies of the diffraction orders using a liquid crystal spatial light modulator.  In fact, 

it may be impossible with the borrowed OPA that was not designed this project.  The lack 

of sufficient phase range (up to several waves), the low transmission in the visible 

wavelength region, the voltage dependent scatter mentioned at the end of Chapter 4, and 

the x-y separability imposed by the 1D architecture that reduces the degrees of freedom 
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in the design are the main practical factors that prevent experimentation of this parameter 

using the OPA. 

 It was chosen to demonstrate CTIS tunability by changing the second parameter, 

the number of diffraction orders.  The goal is to show that the spectral resolution limit of 

the instrument, the signal to noise ratio of the orders, and the reconstruction time are all 

‘tunable’ and to denote the tradeoffs by simply changing the number of diffraction orders.  

It is also an interesting experiment because the resolution limit of the instrument is, at 

present, defined only by a geometric calculation.  A spreadsheet is used to calculate the 

dispersion based on perfect geometric imaging, shown for the tunable CTIS in Figure 5.1.  

 

Figure 5.1:  Spreadsheet calculating the geometric properties of the CTIS instrument. 
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The red arrow in Figure 5.1 points to the calculated dispersion across a single FPA pixel 

with a 5 x 5 diffraction pattern, which happens to be roughly 1 nm in the highest orders 

(in this case the ring of 16 second orders are the highest orders).  The dispersion is 

calculated by the grating equation: 
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            (5.1) 

where ∆d is the width of a FPA pixel in the direction of the dispersion, Λ is the grating 

period, f is the focal length of the reimaging lens, m is the order number, ∆λ is the 

dispersion, and the small angle approximation is used.  Keeping in mind the Nyquist 

critical sampling rate which says that there must be at least two samples (i.e. two pixels) 

in order to resolve a feature, a reasonable inference is that the spectral resolution limit of 

the tunable CTIS should be 2 nm, which is twice the dispersion across a single pixel in 

the highest orders.  The spectral sampling of the CTIS is determined by its calibration, 

and the CTIS is rarely calibrated to its geometric limit that is determined by the 

dispersion calculation.  The first part of the experiment in this chapter will be to develop 

a calibration with sufficient spectral sampling. 

 The reason that the term ‘spectral resolution limit’ is used is because the spectral 

resolution of the CTIS is coupled to the spatial frequency content of the raw image and is 

optimum for images containing high spatial frequency content, i.e. images of point 

sources.  The reason for this, as mentioned in Chapter 2, is because the CTIS is based on 
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limited angle tomography and high spectral frequency content is lost in the missing cone 

(see Figure 2.2) for sources having only low spatial frequencies.  Thus the metric that is 

chosen here is the best possible spectral resolution, which occurs with images of point 

sources, and this is denoted as the spectral resolution limit of the CTIS. 

 It is hypothesized that in the event that the optics of the instrument are corrected 

well enough such that a point source images to a single FPA pixel, this geometric spectral 

resolution limit that is calculated by the grating equation could be reached 

experimentally.  The following section presents an experimental method for determining 

the spectral resolution limit of the CTIS after reconstruction. 

 

Spectral resolution experiment 

 The experiment begins with a definition of resolution that can be found in Born 

and Wolf25 and that was first proposed by Lord Rayleigh.26  Suppose that light entering a 

Fabry-Perot spectrometer is composed of only two quasi-monochromatic components of 

equal irradiance.  The components are said to be ‘just resolved’ if their respective 

maxima overlap with the corresponding minima of the other component, as depicted in 

Figure 5.2.  The experimental definition of the CTIS spectral resolution that is chosen 

here uses Lord Rayleigh’s criterion after reconstruction.   
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Figure 5.2:  Illustration of Lord Rayleigh’s criterion for a Fabry-Perot spectrometer for two ‘just resolved’ 

quasi-monochromatic components.25 

 

The CTIS resolution is defined by the resolvability of two monochromatic point sources 

after reconstruction.  Notice that if truly monochromatic spectral components could be 

passed through the Fabry-Perot without degradation (perfect imaging) and could be 

acquired continuously (continuous sampling), the spectral resolution would be infinite 

because it is the components’ spectral widths that add to masquerade as a single 

component at the average wavelength.  There are three main factors that degrade the 

spectral resolution of a spectrometer:  (1) the finite spectral bandwidth of the source used 

to calibrate the instrument, (2) the optics, and (3) the sampling of the final image.  A 

different metric, the full width at half max of a single spectral component (FWHM), 

could also be used.  The FWHM metric depends on the symmetry of the spectral 
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components and becomes ambiguous when they are asymmetric.  The sources used for 

this experiment use symmetric spectral components.  However, when the sampling is 

pushed to the limit of the FPA there are errors that crop up in the components’ locations 

that translate to asymmetric reconstructions.  Appendix B discusses the FWHM metric 

and presents a few more reconstruction results than are presented in the text of this 

chapter.  

 The spectral resolution of CTIS instruments depends on the spatial distribution 

and spectral bandpass of the sources used for calibration.  Typically it is desired to use a 

source which images to a single pixel.  This is rarely the case and there is usually a 

spread in the calibration ‘point’ source images as shown in Figure 2.6.  For the present 

experiment, the calibration of the tunable CTIS uses sources with a relatively large spatial 

spread (due to the use of a 400 µm diameter fiber) and a large spectral bandwidth, ∆λ, 

from the monochromator, both of which are large in order to get appreciable signal.  The 

current situation, then, is that the limit to the spectral resolution imposed by the 

instrument itself cannot be reached due to insufficient calibration sources.  The solution 

to this problem, presented in the next section, will be to simulate sufficient calibration 

images using the sources that are available.  The remainder of this section describes the 

conventional calibration of the tunable CTIS before the simulation.  

The calibration of the tunable CTIS for the spectral resolution experiment was 

performed from 640 nm to 660 nm with a sample every 0.2 nm, each of which had a 5 

nm FWHM spectral bandwidth, all located on-axis.  Therefore, there are 101 calibration 

images, or spectral bands, for each pixel in the field stop.  The source was then moved 
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off-axis and 51 images were taken from 645 nm to 655 nm in steps of 0.2 nm.  This off-

axis data set serves as the object data for the experiment.  To obtain an image of an object 

with two spectral components, any two images from the object data set were simply 

added together.  The convention that was chosen was to always use the 645 nm image 

(i.e. spectral component) and add another image at a higher wavelength.  A plot of the 

645-655 nm dual component object source spectra after reconstruction is shown in Figure 

5.3(b).  Figure 5.3(a) shows the raw CTIS image in reverse contrast and processed to 

improve the visibility of the orders.  Figure 5.3(c) shows a zoomed in view of the zero 

order image of the ‘point’ object, which is clearly not a point at all and will be referred to 

as the ‘object source image’ of the ‘object source’.  The plot in Figure 5.3(b) is along the 

spectral axis of the reconstructed data cube at the object source image spatial location, 

and Figure 5.4 shows the spectral images (or slices) of the reconstructed data cube from 

640 nm to 659 nm in 1 nm steps.  Figure 5.3(b) clearly shows that the two spectral 

components of the object source are resolved. 
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(a) (b) 

 

(c) 

Figure 5.3:  (a) CTIS raw image of the 645-655 nm dual component object source, (b) the spectra of the 

reconstructed object source, and (c) a zoomed in view of the central ‘point’ object. 
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Figure 5.4:  Shown from right to left, top to bottom are the spectral images of the reconstructions at 1 nm 

intervals from 640 nm to 660 nm. 

 

 Reconstructions are repeated for a 645-649 nm object source image and a 645-651 

nm object source image.  Figures 5.5(a)-(b) show the spectral plots of the reconstructions 

from these object source images along side the spectral plot of the 645-655 object source 

image in Figure 5.5(c).  Figure 5.5(a) shows the reconstructed spectra of the 645-649 nm 

object source and demonstrates that the current sources in the lab are not sufficient for 

calibration or use as object sources to experimentally determine the spectral resolution 

640 nm 641 nm 642 nm 643 nm 644 nm

645 nm 646 nm 647 nm 649 nm648 nm

650 nm 651 nm 653 nm652 nm 654 nm

655 nm 656 nm 659 nm657 nm 658 nm
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limit of the tunable CTIS.  Figure 5.5(b) shows that with the current sources, it would be 

inferred that the CTIS is just able to resolve two components separated by 6 nm, and 

therefore the spectral resolution is 6 nm, which is three times the geometrically calculated 

limit.  This is not the spectral resolution limit, and a method for providing a quasi-

monochromatic point source is needed to continue. 

 

 (a) (b) (c) 

Figure 5.5:  The spectra at the reconstructed point for the (a) 645-649 nm, (e) 645-651 nm, and (f) 645-655 

nm components respectively. 

 

Point source simulation 

 Due to the low transmission of the OPA and the relative small throughput of the 

tunable CTIS, a large core diameter fiber was needed to put enough signal in the plane of 

the field stop to be detectable by the FPA.  A point-like source will therefore not be 

available for this experiment.  However, the data that was taken can be used to simulate a 

point source with a quasi-monochromatic bandpass.  This is done by centroiding each of 

the diffracted orders in the calibration and object images.  Only three reasonable 

assumptions need to be made for centroiding to be a valid simulation of a quasi-
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monochromatic point source for the CTIS:  (1) the source must have a circularly 

symmetric irradiance distribution, (2) the CTIS PSF must be circularly symmetric, and 

(3) the spectral content of the source must be symmetric about its center wavelength.  If 

these assumptions are true, centroiding the original data is a good approximation of a 

quasi-monochromatic point source. 

 

Figure 5.6:  (a) The raw CTIS image, (b) an expanded view of the upper right diffraction order, and (c) the 

centroid of the upper right diffraction order. 

 

Figure 5.6(c) shows the centroids of the upper right diffraction order of the raw CTIS 

image of Figure 5.3(a). 

The reconstructions are repeated after creating simulated calibration and dual 

component object point source images with quasi-monochromatic bandpass using 

centroiding.  The spectral plot of the results of the reconstruction of the 645-646.6 nm 

dual component object point source image is shown in Figure 5.7.  This is the result 

before convolving the diffracted orders with the CTIS PSF which must be accounted for 
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and will be considered in the next section.  The spectral resolution is now 1.6 nm, which 

exceeds the resolution predicted by the geometric dispersion calculation.   

 

Figure 5.7:  Reconstructed spectra of the simulated 645-646.6 nm dual component point source image. 

 

 The centroiding results in continuous spatial locations for the diffracted orders, so 

it is tempting to think that the sampling is now 0.2 nm and it should be possible to resolve 

a dual component object point source image with its components separated by 0.4 nm.  In 

order to reconstruct, however, the sampling of the FPA was reintroduced because a pixel 

location for each centroid must be chosen, and thus the 2 nm limit should once again 

apply.  The reason for the 1.6 nm resolution shown in Figure 5.7 is that with the 

centroiding, 2 nm is really no longer the limit.  Figure 5.8 illustrates this point.  If the 

centroid of λ1 lies near the left edge of a pixel, the fifth centroid from it will lie on the 

right edge of the next pixel, and thus it is possible to have two samples separated by just 
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1 nm.  The reason that the result in Figure 5.7 doesn’t achieve 1 nm resolution is that 

there is noise in the positions of the centroids. 

 

Figure 5.8:  Illustration that with centroiding it is possible to have two spectral samples separated by just 1 

nm.  In this case, the difference between λn and λn+1 is 0.2 nm. 

 

 The limiting factor for the spectral resolution is now the FPA sampling, so 

theoretically the spectral resolution of the result with simulated point sources can be 

improved by upsampling the data images.  Remember, this is a simulation exercise in 

which both the PSF and finite spectral bandpass of the sources have been compensated 

for, but is still useful for confirming the expected behavior after reconstruction.  For 

example, if the images are upsampled by a factor of two, there should be two samples for 

every 0.5 nm and in the best case scenario quasi-monochromatic features separated by 

0.5 nm could be resolved.  In this case, since the centroids are nominally spaced every 0.2 

nm, the experiment will only be able to show a resolution of 0.6 nm when the images are 

upsampled by a factor of two.  This upsampling was done, and the spectral plot of the 

result for the 645-646.2 nm dual component object point source is shown in Figure 5.9.  

The spectral resolution by the Rayleigh criterion is now 1.2 nm.  Actually, Figure 5.9 

λ1 λ2 λ3 λ5 λ4 λ6 
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looks a little over resolved by the Rayleigh criterion and the 1.2 nm number should be 

lower, however, as Appendix B shows, the next reconstruction at 1.0 nm does not show 

two distinct spectral components.  However, the FWHM metric points to a resolution  

 

 

Figure 5.9:  Spectral plot of the reconstruction of the 645-646.2 nm simulated point image for an upsample 

factor of 2. 

 

close to 0.8 nm.  The reason the Rayleigh criterion once again fails to reach the 

theoretical 0.6 nm (three points separated by 0.2 nm to get to the next ‘pixel’) is 

attributed to noise in the centroids’ positions.  The 0.2 nm translation of the spectral 

sources with the monochromator makes it possible to do an upsample by a factor of 4 (an 

expected 0.25 nm of dispersion per ‘pixel’) before the source spectral separation become 

the limit, however, the arrays become prohibitively large for reconstruction.  It is also 

expected that the noise in the positions of the centroids has now become the real limit to 
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upsampling.  Note that the upsampling is no longer valid when the PSF of the real CTIS 

system is taken into account. 

 

Spectral resolution limit 

 The real goal is to simulate quasi-monochromatic point sources using centroiding 

in order to experimentally determine the spectral resolution limit of the instrument.  In 

order for centroiding to be a valid representation of quasi-monochromatic point source 

images of a real system, they must be convolved with the PSF of the CTIS , shown in 

Figure 5.10. 

 

Figure 5.10:  The PSF of the CTIS. 
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The experiment is once again repeated after convolving the simulated quasi-

monochromatic point source calibration and object images with the PSF, and the result is 

shown below in Figure 5.11.  The result confirms the geometric calculation in Figure 5.1 

that the CTIS spectral resolution limit for this instrument is very near 2 nm.   

 

 

Figure 5.11:  Reconstructed spectra of the 645-647 nm simulated point image with the CTIS PSF included.  

This represents the true experimental result of the CTIS spectral resolution limit for a 5 x 5 configuration. 

 

This is the experimental verification of the geometric dispersion calculation, and the 

conclusion is that the spectral resolution limit of the CTIS is twice the dispersion 

calculation for the highest orders.  The next question is if the spectral resolution of the 

tunable CTIS changes when the instrument’s configuration is altered by designing the 

tunable disperser to change the number of diffraction orders. 
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Configuration comparison 

 The experiment was repeated using two other disperser configurations.  Including 

the 5 x 5 configuration that has thus far been used, the three configurations are shown in 

Figure 5.12 using a monochromatic extended source.  The first configuration is the 5 x 5 

pattern, the second is a 3 x 5 pattern that omits the columns of second orders, and the 

third is another 3 x 5 pattern that omits the first orders.  The patterns in Figure 5.12(a)-(c) 

will be referred to as patterns A, B, and C, respectively.  The reason that the orders in the 

vertical direction were not changed is that the horizontal electrode LC cell of the OPA is 

not used due to its voltage dependent scatter.  The horizontal electrodes were held to a 

constant voltage that minimizes the scatter and one of the PMMA etched CGHs was used 

for diffraction in the vertical direction.  Thus the disperser was tuned only in the 

horizontal direction.  The reason for the faint second orders on the right side of pattern B 

is that the electrode voltage solution that was found for this pattern happens to couple 

some of the light to those orders. 

   

 (a) (b) (c) 

Figure 5.12:  The three configurations under test:  (a) pattern A, (b) pattern B, and (c) pattern C. 
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 The results of the limiting spectral resolution, reconstruction time, and limiting 

SNR for the three configurations are presented in tabular form in Figure 5.13.  The 

limiting SNR is defined as the SNR of the faintest diffracted order in the configuration in 

question.  Also, the results of the reconstructions without processing (‘as calibrated’) and 

after centroiding and convolving with the CTIS PSF (‘resolution limit’) are presented. 

Spectral Resolution (nm) Reconstruciton time (sec/iter) Limiting SNR
Pattern A As calibrated 6.0 nm 60.0 sec 8.69

Resolution limit 2.0 nm 13.2 sec
Pattern B As calibrated 6.6 nm 57.5 sec 23.37

Resolution limit 3.0 nm 7.9 sec
Pattern C As calibrated 6.0 nm 63.4 sec 10.78

Resolution limit 2.4 nm 8.1 sec  

Figure 5.13:  Results of the spectral resolution experiment for the three disperser configurations. 

 

The reconstruction time for the experiment depends on the number of points 

saved in the sparse matrix formation, and this number is radically reduced by centroiding.  

Again, it is stressed that the only reason for the centroiding is that sufficient point sources 

cannot be achieved with the current equipment.  The implication is that the same gains in 

spectral resolution and reconstruction time would be achieved without centroiding if 

sufficient point sources were available.   

The limiting SNR is found by taking the maximum value of the faintest order in 

the 640 nm calibration image divided by the mean of the image.  This maximum value 

was less than one tenth the dynamic range of the camera and is an arbitrary measure, but 

is consistent between the three configurations and shows a gain of about a factor of three 

in SNR between the faintest projections by switching from pattern A to pattern B.  
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Pattern C does not show a significant SNR gain even though it has fewer projections than 

pattern A because the disperser was not properly optimized.  In the case of pattern C, the 

algorithm simply didn’t find the best CGH solution for this goal diffraction pattern and 

too much of the light was coupled into the zero diffraction order.  Repeating the feedback 

design is time consuming, and since pattern C is sufficient for the proof of the concept its 

optimization was not pursued. 

At first glance the results shown in Figure 5.13 are unexpected.  There is actually 

a 50% reduction in the experimental value for the spectral resolution limit when 

comparing the values for both patterns A and B (from 2 nm to 3 nm).  Since pattern B 

merely cuts out the second orders in the horizontal direction, it was expected that there 

would not be a change because there are still second orders in the vertical direction and 

the dispersion across the FPA per pixel is the same in all the second orders.  The reason 

for the change is that there are simply too few second orders in pattern B - six of them as 

opposed to ten of them for pattern C, and sixteen of them for pattern A.  There are an 

insufficient number of second order projections to sample the content of the object cube 

using pattern B – i.e. there are too few planes in the frequency representation of the data 

cube for pattern B (Figure 2.2a illustrates the use of a finite number of planes).  

Accordingly, there is a 20% reduction in the spectral resolution limit of pattern C. 

The hypothesis at the beginning of this chapter was that the spectral resolution 

limit of the CTIS as calculated by geometric dispersion could be experimentally verified, 

and this was proven correct.  Reconstruction affects the spectral resolution of the data 

cube due to the tomographic nature of the measurement, and care must be taken to 
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consider the CTIS configuration when deciding whether the spectral resolution can be 

inferred from the dispersion calculation.  In the absence of adequate point sources to 

experimentally determine the spectral resolution limit of a CTIS, this chapter presents a 

method based on centroiding to simulate ideal quasi-monochromatic point sources.  Only 

three simple conditions need to be met for this method to be a valid:  (1) the point source 

must have a circularly symmetric irradiance distribution, (2) the CTIS PSF must be 

circularly symmetric, and (3) the spectral content of the point source must be symmetric 

about its center wavelength. 

   

Alternative calibration method 

In order to avoid simulation of adequate calibration images, the calibration 

sources need to be made point-like and have a very small bandpass.  The major difficulty 

is that the signal is too low when acquiring calibration images, and this is exasperated 

when the bandpass of the source is further reduced.  The suggestion, then, is to use lasers 

as quasi-monochromatic sources.  There would then no longer be a need for a 

monochromator or to image the exit face of a fiber to the field stop.  The front objective 

lens of the CTIS would not have to be removed, and the laser source could shine through 

a pinhole placed on axis and far enough away from the CTIS such that its image is the 

PSF of the instrument at that particular wavelength.  The problem with this suggestion is 

that several tunable lasers27 would be needed to accomplish the calibration and the cost 

would be prohibitive.  However, Hege28 has shown that only a few calibration 

wavelengths spanning the band of interest are needed along with Fourier interpolation in 
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order to construct the CTIS system H matrix.  Laser from the green to red portion of the 

visible spectrum are commercially available at low cost, and the only major cost factor 

would then be in the blue.  The assumption is that the calibration images are a smoothly 

varying function of wavelength, which is true of the CTIS.     
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

 

 The goal of this dissertation has been twofold:  (1) to integrate a liquid crystal 

spatial light modulator into a CTIS instrument and characterize its performance as a 

tunable CTIS disperser, and (2) to implement tunability by analyzing different CTIS 

configurations. 

 To realize these goals, the Raytheon Optical Phased Array (OPA) was integrated 

into a visible CTIS.  An analysis of the OPA characterized its phase vs. voltage response 

and the effects of its crosstalk on a binary phase profile.  The binary phase response of 

the OPA was also useful to characterize the transfer function of the OPA.  In this way the 

actual phase profile of the binary phase was modeled by its spatial frequency 

components. 

 The crosstalk of the OPA forced the use of a feedback CGH design, rather than an 

a priori design in the computer.  This lead to an analysis of the effects of nonlinearity in 

the current polychromatic linear inversion technique that is used to design CTIS 

dispersers.  Initially the algorithm would not converge when implemented with the OPA 

in feedback.  The analysis and experimentation showed that three modifications to the 

algorithm were necessary when relating OPA voltages to far-field amplitudes in the FPA 

plane rather than relating CGH phases to complex electric fields.  The three 

modifications were to threshold the smallest singular values, damp the voltage correction 

vector, and strictly enforce the voltage range after correction. 
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 Once these modifications were added, the feedback algorithm converged and the 

OPA was successfully designed.  Using this feedback design, the OPA can be designed to 

perform as any CGH that could be fabricated from the current, state-of-the-art design 

method and then etching that design into an appropriate material. 

 An experiment was also performed which analyzed the implementation of 

tunability.  It was chosen to determine the effects of altering the number of diffraction 

orders on CTIS reconstructions of a point source.  From the analysis, a simple method for 

post-processing the CTIS calibration and object source images was developed to 

experimentally determine the spectral resolution of the instrument.  It was determined 

that although higher orders, such as the second orders, contain the same dispersion per 

pixel, the resolution after reconstruction changes depending on the number of orders (i.e. 

projections) which exist for the reconstruction.  The conclusion is that not only do the 

highest orders need to have sufficient spectral sampling, there must be several of them in 

order to have enough projections to properly sample the data cube.  If there are enough of 

these projections, the spectral resolution limit of the final data cube can be inferred from 

a geometric calculation of the dispersion in the highest orders. 

 

Future work 

 What remains is to utilize tunability to perform optical processing.  This includes 

designing the OPA to whiten backgrounds so that known spectra or sets of spectra can be 

identified without reconstruction, modulating the efficiencies of the diffracted orders to 

explore the possibility of spreading information into the region of the missing cones, or 
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even programming a quadratic phase to the OPA concurrent with the CGH phase profile 

to replace the reimaging lens of the CTIS.  The linear inversion technique needs to be 

analyzed in more depth to determine its possibilities.  As Volin9 states, “A statistical 

model must be generated which expresses the set of possible spectral variation which 

may be generated….”  The suggestion here is to develop a simulation of an idealized 

CTIS and perform an exhaustive study of the effects of the disperser designs that can be 

achieved in the computer. 

 The advent of the next generation of LC SLMs leads to dramatic improvement of 

the tunable version of the CTIS.  Two-dimensional, fully addressable devices with the 

appropriate feature sizes for the visible through the LWIR are coming to the market at 

reasonable costs.  It is difficult to get more than a wave of phase delay out of these 

devices (with the current LC materials), however, they could be cascaded to allow for the 

dynamic phase range needed to perform optical processing with the CTIS. 

 The issue of CTIS calibration holds opportunity for future creativity.  An exciting 

possibility is the use of Fourier interpolation to vastly simplify the calibration procedure 

in the lab, as well as open the door to the possibility of using lasers as quasi-

monochromatic calibration sources 

 Lastly, but certainly not least, is to add computer control of zoom lenses along 

with a tunable disperser to achieve a fully tunable CTIS and study the possibilities of 

trading off spatial and spectral resolutions. 
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 APPENDIX A – OPA COMMUNICATIONS 

 

 The Optical Phased Arrayed fabricated by Raytheon Network Centric Systems 

was originally designed as a portable demonstration device in the early 1990s.  The 

electronics control box (see Figure 4.1) was custom built and converts 10 bit numbers 

that are passed to it from a computer via 10 base T raw Ethernet packets into actual 

voltages to be applied to the transparent electrodes.  The computer for the portable 

demonstration OPA is an HP Omnibook running Windows 3.1.1 and the control software 

is written in LabVIEW.  It is unclear what driver software actually sends the messages to 

the OPA electronics box, and the protocol of those messages (Ethane) is unknown.  The 

Omnibook does not have the computing power to do the feedback SVD CGH design, so 

new control software was developed.  A 37 pin extension cable was purchased to connect 

the OPA to the electronics box so that the OPA could be placed in the CTIS. 

 The first step was to decode the messages that are sent to the OPA via the HP 

Omnibook because there is no documentation available.  The LabVIEW interface allows 

the user to select any 10 bit value for 16 different electrodes, and a message is sent every 

time a value is changed.  A free downloadable packet sniffer, Ethereal, was used to detect 

the packets of each message and their contents.  Each message contains five packets.  The 

first packet is a broadcast packet, and the second packet is the response of the electronics 

box to the broadcaster, giving the broadcaster its source address.  The next two packets 

contain the electrode voltage data from the computer to the electronics box, and the last 

packet is confirmation of receipt from the electronics box to the computer.   
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Figure A.1:  Screen shot of the Ethereal packet sniffer highlighting the five packets of a message that is 

sent to the OPA, with the data shown for the packet highlighted in blue. 

 

Figure A.1 shows a screen shot of the Ethereal packet sniffer output after it has detected 

several packets.  The first five highlighted packets are the content of a single message.  

Of interest for the decoding are the third (highlighted in blue) and fourth packets – these 

contain the data for the electrode voltage numbers.  The first thing to notice is that the 

data is split into two packets, each 1040 bytes in length, with the first 16 bytes containing 

the destination address (6 bytes in the red border), source address (6 bytes in the green 
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border), the size of the message in bytes (2 bytes in the blue border) and a non-standard 

packet number designation that simply is either “1” or “2” (2 bytes in the yellow border), 

presumably denoting the first or second data packet.  All numbers are in hexadecimal 

format, where one byte corresponds to 2 numbers that are paired together, each ranging 

from 0 to f (8 bits for each byte).  The next thing to notice is that although the HP 

Omnibook only controls sixteen of the electrodes, the message sends a voltage number to 

all 256 of the independently addressable electrodes – the sixteen electrodes are simply 

repeated.  The first eight bytes of the second line, which is the start of the actual data (line 

0010 in Figure A.1) contains the data for the first electrode in 6 different channels.  This 

is because of the coarse/fine architecture that Raytheon uses.  The first data packet 

contains the data for the first 128 electrodes (8 bytes per electrode – 1024 bytes), and the 

second message contains the data for the last 128 electrodes. 

 The last two channels, 5 and 6, control the coarse OPA used for this project.  It is 

presumed that two of the first three channels control the fine OPA.  It is also presumed 

that two of the channels are left empty, most likely for convenience in constructing the 

custom boards in the electronics box.  All six channels can be modified in the LabVIEW 

software to view the effects in the packets, and it was determined that each channel 

contains 10 bits such that data is sent to 60 of the possible 64 bits for each electrode, and 

four of the bits remain unchanged.  The first four bytes contain the data for channels 1-3, 

and the second four bytes contain the data for channels 4-6.  These are independent of 

each other, however, the data within each of these four bytes is not in order.  This is best 

illustrated in Figure A.2 below.  The top line is the data from the sniffer – the 8 bytes 
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inside the black border in Figure A.1.  The data is only shown for the last four bytes 

(rightmost four bytes in the black border) since this is the data for channels 4-6.   

Data

0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Bit values

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit number

Ch 6 - Red 5 4 3 2 1 0 15 14 13 12 0 0 0 0 0 0 1 1 1 1 Ch 6

Ch 5 - Green 11 10 9 8 23 22 21 20 19 18 0 0 0 0 0 0 1 1 1 1 Ch 5

Ch 4 - Blue 17 16 31 30 29 28 27 26 25 24 0 0 0 0 0 0 1 1 1 1 Ch 4

Bit number 15 actually corresponds to real number zero!!  There is an offset of 15 added to the sent data

0

15

15

15

0

----------->

0 f 3 c

----------->

----------->

f 0

 

Figure A.2:  Spreadsheet illustrating the arrangement of the data for each channel within each number that 

is sent to a particular electrode. 

 

The bits are ordered from most significant to least significant, from left to right, as 

denoted by the bit number row.  The colors in this row denote which channel that 

particular bit belongs to, and the placement of that bit within the number for the particular 

channel is shown in the middle on the left.  For example, bits 0,1,2,3,4,5,12,13,14,15 all 

belong to channels 6, however, they are ordered from left to right, most significant to 

least, as 5,4,3,2,1,0,15,14,13,12.  There is an offset of 15 for all channels.  This, then, is 

the electrode number “0” for all three of these channels.  Channel 5 corresponds to the 

horizontal electrodes as the OPA sits atop the electronics box, and channel 6 corresponds 

to the vertical electrodes. 

 There are just two more complicating factors.  First, it is expected that the 

electrode number, since there is an offset, can only range from 0 to 1007.  However, the 

experimentation shows that the range is only from 0 to 993.  There seems to be another 

offset of 15 at the high end of the number as well.  Second, the arrangement of the 
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electrode numbers is flipped in the second message.  For example, the first message will 

send the data to electrodes 1,2,3,4,…,128, corresponding to bytes 16 to 1040.  The 

second message will send the data to electrodes 256,255,254,…,129, corresponding to 

bytes 16 to 1040.  This is illustrated in Figure A.3, where the second data message is now 

highlighted.  The original data values programmed to the 16 electrodes on the HP  

 

Figure A.3:  The second packet of the message illustrating the flipping of the order of the electrodes that 

are addressed in the message. 
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Omnibook were 0, 125, 250, 275, 400, 525, 650, 725, 850, 975, 1000, 1000, 1024, 1024, 

0, 0.  Note that the values that actually get sent will be 0, 125, 250, 275, 400, 525, 650, 

725, 850, 975, 993, 993, 993, 993, 0, 0. 

 After decoding, a program must be written to send the correct packets.  This 

proved to be much more difficult than it seems.  Dr. Kevin McNeill was instrumental in 

developing the ability to send raw Ethernet packets using contemporary operating 

systems (Windows NT, 2000, or XP).  The first trial was to use Windows sockets, 

however, sockets demand some type of protocol and do not allow the user access to the 

Media Access Control layer (MAC).29  Windows also provides software called Data Link 

Control (DLC) that allows the user access to the MAC layer in order to send raw packets, 

according to Windows documentation.  This was concluded to be false.30  Apparently 

DLC seeks to establish a connection between the sender and receiver before customized 

packets can be sent.  The third method, which was successful, was to utilize the Network 

Driver Interface Specification (NDIS).31  This requires writing drivers in Windows DDK, 

the driver development kit.  However, these drivers do exist and one was bought from 

PCAUSA, a company near Atlanta, over the internet.  Within two hours of purchase the 

software was delivered and communications with the OPA were established. 

 The author is truly grateful for the use of the OPA.  Although the OPA was 

limited by its crossed 1D architecture and low transmission in the visible for use in the 

CTIS, it is truly an amazing device with repeatable performance and gave instant CGH 

gratification. 
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 APPENDIX B – FWHM METRIC 

 

 One of the most widely used metrics for determining the resolution of a 

spectrometer is the full width at half maximum (FWHM) of detected spectral 

components.  The assumption with this metric is that the components have a width that is 

symmetric.  For the most part, the spectral components of the tunable CTIS spectral 

resolution experiment are symmetric and the FWHM metric can be used.  However, 

when two spectral components are very close, the FWHM metric becomes ambiguous 

and instead the Rayleigh criterion was used.  The following presents the results of 

reconstructions near the just-resolved cases presented in Figures 5.7, 5.9 and 5.11 and 

shows the data from which the spectral resolution was chosen as well as the FWHM of 

the components. 

 

Centroided case 

 The reconstructions shown below in Figure B.1(a)-(d) are the companion plots to 

Figure 5.7, each with a slightly different spectral separation between the two components.  

Figure B.1(a) has a 2 nm separation, (b) has a 1.8 nm separation, (c) is a carbon copy of 

Figure 5.7 and has a separation of 1.6 nm, and (d) has a separation of 1 nm.  The spectral 

resolution of lies somewhere between Figure B.1(b) and (c), and thus (c) was chosen as 

the closest representative of the resolution.   Figure B.1(d) shows that 1 nm is not 
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resolvable, and Figure B.1(a) shows two components that are clearly resolved and from 

which a FWHM of about 1 nm can be read.   

 

 (a) (b) 

 

 (c) (d) 

Figure B.1:  Plots of the dual spectral components separated by (a) 2 nm, (b) 1.8 nm, (c) 1.6 nm, and (d) 1 

nm.  Plot (c) is a repeat of Figure 5.7 and is the spectral resolution of the tunable CTIS according to the 

Rayleigh criterion after centroiding and before convolving by the PSF. 
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Upsampled case 

 The reconstructions shown in Figure B.2(a)-(c) are the companion plots to Figure 

5.9, again each with a slightly different spectral separation between the two components.   

 

 (a) (b) 

 

 (c) 

Figure B.2:  Plots of the dual spectral components separated by (a) 1.4 nm, (b) 1.2 nm, and (c) 1 nm.  Plot 

(b) is a repeat of Figure 5.9 and is the spectral resolution of the tunable CTIS according to the Rayleigh 

criterion after centroiding and upsampling but before convolving by the PSF. 
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Figure B.2(a) has a 1.4 nm separation, (b) is a carbon copy of Figure 5.9 and has a 

separation of 1.2 nm, and (c) has a separation of 1 nm.  In this case, Figure B.2(b) was 

chosen as the best representative of the Rayleigh criterion.  The spectral components of 

the Figure B.2(a) show a FWHM of about 0.6 nm. 

 

PSF case 

 The reconstructions shown in Figure B.3(a)-(d) are the companion plots to Figure 

5.11, once again with each having a slightly different spectral separation between the two 

components.  Figure B.3(a) has a 3 nm separation, (b) has a 2 nm separation, (c) is a 

carbon copy of Figure 5.11 and has a separation of 1.8 nm, and (d) has a separation of 1.6 

nm.  In this case, Figure B.3(c) was chosen as the best representative of the Rayleigh 

criterion.  The spectral components of the Figure B.3(a) show a FWHM of about 1.4 nm. 
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 (a) (b) 

 

 (c) (d) 

Figure B.3:  Plots of the dual spectral components separated by (a) 3 nm, (b) 2 nm, (c) 1.8 nm, and (d) 1.6 

nm.  Plot (c) is a repeat of Figure 5.11 and is the spectral resolution of the tunable CTIS according to the 

Rayleigh criterion. 

 

 

 
 
 



 136

                                                                                                                                                 
1  FOVEON website:  http://www.foveon.com/X3_tech.html 
 
2  AVIRIS website:  http://aviris.jpl.nasa.gov/ 
 
3  P. R. Norton, “Status of infrared detectors,” in Infrared Detectors and Focal Plane 

Arrays V, E. L. Dereniak and R. E. Sampson, eds., Proc. SPIE 3379, pp. 102-114 
(1998). 

 
4  Brian Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press, 

Boca Raton, 1996. 
 
5  J. M. Mooney, V. E. Vickers, An Myoung, A. K. Brodzik, “A High-throughput 

hyperspectral infrared camera,”  Journal of the Optical Society of America A, 14, No. 
11, pp. 2951-2961 (Nov. 1997). 

 
6  M. R. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer:  

experimental calibration and reconstruction results,”  Applied Optics  34,  4817-4826 
(1995). 
 

7  P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. 
Holz, S. Liberman, N. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical 
Phased Array Technology,” Proc. IEEE 84, pp. 268-298, 1996. 

 
8  M. R. Descour, “Non-scanning imaging spectrometry,”  Ph.D. Dissertation, 

University of Arizona (1994). 
 
9  C. E. Volin, “Portable snapshot infrared imaging spectrometer,”  Ph.D. Dissertation, 

University of Arizona (2000). 
 
10  J. W. Goodman, Introduction to Fourier Optics,  McGraw-Hill, San Francisco, 

Second Edition, 1996, pp. 81-83. 
 
11  M. S. Kim, M. R. Feldman, C. C. Guest, “Optimum encoding of binary phase-only 

filters with a simulated annealing algorithm,”  Optics Letters, v. 14, p. 545 (1989). 
 
12  C. L. Coleman, “Computer generated holograms for free-space optical interconnects,”  

Ph. D. Dissertation, University of Arizona, p. 72 (1998). 
 
13  William H. Press, Saul Teukolsky, William Vetterling, and Brian Flannery, 

Numerical Recipes in C, pp. 408-412 (Cambridge University Press, 1992). 
 
14  R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of 

phase from image and diffraction plane pictures,”  Optik 35, pp. 237-246 (1972). 



 137

                                                                                                                                                 
 
15  M. R. Descour, C. E. Volin, T. M. Gleeson, E. L. Dereniak, M. F. Hopkins, D. W. 

Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging 
spectrometer using a computer-generated hologram disperser,”  Applied Optics, 36, 
3694-3698 (1997).  

 
16  C. E. Volin, M. R. Descour, and E. L. Dereniak, “Design of broadband-optimized 

computer-generated hologram dispersers for the computed-tomography imaging 
spectrometer,” in  Imaging Spectrometry VII, M. R. Descour and S. S. Shen, eds., 
Proc. SPIE 4480, pp. 377-387 (2002). 

 
17 C. L. Coleman, “Computer generated holograms for free-space optical interconnects,”  

Ph. D. Dissertation, University of Arizona, Ch. 3 (1998). 
 
18  H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Interscience, 

Hoboken, 2004, pp. 34-42. 
 
19  Liquid Crystal tutorial of Case Western Reserve University:   

http://plc.cwru.edu/tutorial/enhanced/files/textbook.htm 
 
20  L. M. Blinov, Electro-optical and magneto-optical properties of liquid crystals.  

Chinchester, UK:  Wiley, p. 292, 1983. 
 
21   J. Gaskill, Linear Systems … 
 
22  J. W. Goodman, Introduction to Fourier Optics,  McGraw-Hill, San Francisco, 

Second Edition, 1996, p. 102. 
 
23  Dr. Terry Dorschner, personal communication, July 2003 
 
24  Dr. Tomasz Tkaczyk, personal communication, April 2004 
 
25  M. Born, E. Wolf, Principals of Optics,  Cambridge University Press, Cambridge, 

Seventh Edition, 1999,  p. 371 
 
26  Lord Rayleigh, Phil. Mag. (5), 8 (1879), p. 261. 

 
27   http://www.opticsjournal.com/tutorial.htm 
 
28  Dr. E. Keith Hege, personal communication, January 2005 
 
29  Dr. Kevin McNeill, personal communication, October 2002 
 



 138

                                                                                                                                                 
30  Dr. Kevin McNeill, personal communication, December 2002 
 
31  Dr. Kevin McNeill, personal communication, January 2003 


